S'inscrire identifiants oubliés ?

Prototypes, recherche, innovation

Une démarche collaborative

Dans le domaine de la recherche, la réalisation des expériences scientifiques requiert souvent de nouveaux instruments, plus perfectionnés, plus sensibles, plus puissants ou tout simplement adaptés à des conditions expérimentales particulières. Ces prototypes de laboratoire sont le fruit ...

Quarks : une combinaison à quatre

Par Ranjithsiji — Travail personnel CC BY-SA 4.0

Le légo des quarks

Contrairement au proton et au neutron, les quarks sont des particules élémentaires, c’est-à-dire des particules qui ne sont pas elles-mêmes constituées d'autres « briques ». L’électron est élémentaire aussi, comme ...

La foudre bat des records

CC BY SA André Karwath aka Aka

Les éclairs et la foudre sont parmi les phénomènes naturels les plus spectaculaires. On estime que chaque seconde l’atmosphère terrestre est traversée par une cinquantaine de ces décharges électriques. En effet, ...

Un moteur moléculaire à effet tunnel

Credit: Empa
Un moteur quantique
Comme d’autres moteurs moléculaires de cette échelle, le fonctionnement de ce nanomoteur conçu à l’Ecole Polytechnique Fédérale de Lausanne (EPFL), met en jeu la mécanique quantique. Mais l’originalité de ce nouveau moteur réside dans le fait que la cause-même ...

Photo-ionisation

A photo of the COLTRIMS reaction microscope built by Alexander Hartung as part of his doctoral research in the experiment hall of the Faculty of Physics. Credit: Alexander Hartung.

La quantité de mouvement de la lumière

Bien que de masse nulle, la lumière possède une quantité de mouvement ...

Vers de nouvelles technologies de chargeurs

Image Vedecom - DR

Des composants indispensables

De nombreux appareils électriques fonctionnant sur piles ont besoin d’être chargés régulièrement. On emploie donc des accumulateurs électrochimiques. Ces derniers sont rechargeables un très grand nombre de fois, contrairement aux piles. Téléphones ...

Un micro-accélérateur de particules

Vue du tunnel du LHC - Auteur : Maximilien Brice, CERN

Des ondes électromagnétiques pour accélérer les particules

Les physiciens de l’infiniment petit emploient des accélérateurs pour communiquer aux particules de très grandes vitesses afin de produire des collisions énergétiques. Au CERN par exemple, grâce à l’accélérateur LHC (le plus puissant du monde) qui fait 27 km de circonférence, les protons se percutent avec une vitesse égale à 99,999999 % de la vitesse de la lumière. En réalité, les protons sont pré-accélérés dans d’autres machines plus petites avant de pénétrer dans le LHC et subir leur accélération ultime. Par ailleurs, pour diverses applications, notamment médicales, des accélérateurs de particules plus modestes sont également nécessaires pour produire certains rayonnements employés en radiothérapie.

Les particules sont accélérées à l’aide de champs électromagnétiques, un peu comme des surfeurs avançant sur leurs vagues. L’énergie des particules augmente grâce aux ondes électromagnétiques qui leur en fournissent. Souvent, ce sont des microondes qui sont employées. Or, l’énergie du photon associé à l’onde est proportionnelle à la fréquence ou - ce qui revient au même - inversement proportionnelle à la longueur d’onde.

Ondes plus courtes, accélérateurs plus petits

L’idée que des chercheurs de l’université de Stanford aux Etats-Unis ont poursuivie consiste justement à accélérer des électrons avec des impulsions lasers infrarouges dont la longueur d’onde est de l’ordre de 1000 à 100 000 fois plus courte que les microondes. Cela signifie aussi des dimensions autant de fois plus petites. La taille d’un accélérateur comme le LHC devrait donc pouvoir être réduite à quelques dizaines de mètres, voire à moins d’un mètre. Pour le moment, les physiciens sont parvenus à accélérer des électrons à 1 keV (mille électronvolts) sur une distance de 25 micromètres. En effet, le « tube » de l’accélérateur a été dessiné sur une puce en silicium de 25 micromètres de long : il s’agit d’un sillon de 0,25 micromètre de large. C’est dans ce sillon que les électrons ont été accélérés à mille volts, grâce à 100 000 impulsions lasers par seconde traversant le sillon perpendiculairement. Afin que l’énergie des électrons atteigne 1 MeV soit 94% de la vitesse de la lumière, il faudrait mille tubes de ce type, soit une longueur de 25 mm. Compte tenu de l’exploit réalisé, les accélérateurs ultra-miniaturisés devraient voir le jour prochainement.

En savoir plus 
Sur l'utilisation des lasers pour accélérer les particules
https://home.cern/fr/news/news/physics/nobel-work-shines-light-particle-physics

Publié le 20/05/2020
 

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Une forêt tropicale en Antarctique
Des scientifiques ont découvert qu’au Crétacé le continent Antarctique accueillait une forêt tropicale.

Vue d'artiste de cette forêt (C) Alfred-Wegener-Institut, James McKay, Creative Commons licence C-BY 4.0
Un sol bien conservé

Des chercheurs de l'Institut Alfred-Wegener ont découvert un sol forestier du Crétacé très bien préservé dans les fonds marins proches du continent Antarctique. Une carotte sédimentaire a été prélevée en 2017 près du glacier de l'île de Pine Island. L’aspect de cette carotte a retenu l’attention des chercheurs : « la coloration inhabituelle de la couche sédimentaire située entre 27 et 30 m de profondeur différait nettement des couches supérieures » explique Dr. Johann Klages, géologue et principal auteur principal de cette étude, parue dans la revue Nature.

L’excellente préservation de ce sol vieux de 90 millions d’années a permis d'identifier des traces de pollen, de spores, des restes de plantes à fleurs avec leurs cellules individuelles et tout un réseau dense de racines. Ces informations précieuses issues des fossiles suggèrent un paysage étonnant dans l’Antarctique occidentale, à l’époque des Dinosaures : une région couverte par une forêt tropicale marécageuse, avec de nombreux conifères et des fougères arborescentes. L’un des chercheurs, le Professeur Salzmann, compare ainsi cette forêt ancestrale aux forêts qu’on peut trouver actuellement en Nouvelle-Zélande.

Une concentration en dioxyde de carbone revue à la hausse

Le Crétacé correspond à l’une des périodes les plus chaudes sur Terre, au cours des dernières 140 millions d’années, également caractérisée par un niveau élevé des océans.

L'étude approfondie des sédiments suggère une pluviométrie importante et une température annuelle moyenne de 12 °C, et de 19 °C l'été. Pour une région privée de soleil 4 mois par an durant la nuit polaire, ces niveaux sont incompatibles avec la présence d'une calotte glaciaire telle que celle existant actuellement. 

Ces conditions climatiques seraient dues à une forte concentration en dioxyde de carbone dans l'atmosphère, expliquant un climat aussi tempéré sous de telles latitudes (82° S). « Avant cette étude, l’hypothèse généralement admise était que la concentration de dioxyde de carbone moyenne globale durant le Crétacé était d’environ 1 000 parties par million. Mais les résultats de nos simulations font ressortir des concentrations de 1 120 à 1 680 ppm », explique le Professeur Gerrit Lohmann.

Péripéties géologiques 
A l'époque du dépôt de ces sédiments, l'Ouest du continent Antarctique et la Zélande étaient sur le point de se séparer. Après ce phénomène d'expansion des fonds océaniques, le phénomène de subduction prit le dessus, ce qui explique que les couches géologiques se retrouvent sous les fonds marins aujourd'hui. D'autre part, durant la glaciation de l'Antarctique occidental, il y a 30-35 millions d'années, des sédiments du plateau continental ont été charriés par les glaciers jusqu'au fond des mers. Ces deux processus expliquent la situation actuelle de ces couches sédimentaires.

Publié le 20/04/2020

En savoir plus :

L’étude complète publiée sur Nature : https://www.nature.com/articles/s41586-020-2148-5.epdf?referrer_access_token=zdctooWmIkrZLMYcqEl3U9RgN0jAjWel9jnR3ZoTv0MUgcU_4QsUvTrkUoSjhemG2b7YiuOYcHX9_0y__xu3XNKefb2foLtaKkLSuC-ua6aP_DA6Dtn0lXmUktYhjhgi9WwJE1fE_36_XtVA2KwB93HaQ8wk_UUynIoIdrgcd8S9ueUzjsMPvYNwqv-QUVQoWFr6_aFQ4_u83nIfNchI09TYs3o1TMuRAHdsZTEf_ijt3gOUn6b2CaRIKPg1oo3549YEK19x3Har1IJCoasnyTEzSpIvtsbWkZ__2XEfH-s=&tracking_referrer=www.cbsnews.com

 

Frida Hussein
Twitter Facebook Google Plus Linkedin email