S'inscrire identifiants oubliés ?

Aimant au néodyme et verre de spin

Image DR
Domaines micrométriques et aimantation
Dans un morceau de fer, il existe des milliards de très petites régions micrométriques appelées « domaines magnétiques » composés de milliards d’atomes de fer pointant leur spin parallèlement, dans le même sens. Chacun de ces domaines est ainsi ...

Vers de nouvelles technologies de chargeurs

Image Vedecom - DR

Des composants indispensables

De nombreux appareils électriques fonctionnant sur piles ont besoin d’être chargés régulièrement. On emploie donc des accumulateurs électrochimiques. Ces derniers sont rechargeables un très grand nombre de fois, contrairement aux piles. Téléphones ...

Un micro-accélérateur de particules

Vue du tunnel du LHC - Auteur : Maximilien Brice, CERN

Des ondes électromagnétiques pour accélérer les particules

Les physiciens de l’infiniment petit emploient des accélérateurs pour communiquer aux particules de très grandes vitesses afin de produire des collisions énergétiques. Au CERN par exemple, ...

Tromper une caméra thermique

Caméras thermiques : « filmer la température »

Tout corps, en raison de sa température, émet par sa surface un rayonnement dont le spectre (fréquence ou longueur d’onde en abscisse, intensité en ordonnée) couvre théoriquement toute la gamme des ondes électromagnétiques, l’intensité de l’émission variant ...

Piles bêtavoltaïques au carbone 14 recyclé

Des piles « bêtavoltaïques »

Certains noyaux radioactifs, généralement ceux possédant trop de neutrons par rapport à leurs protons, transmutent un neutron en proton, électron et antineutrino. Cette réaction s’appelle la radioactivité bêta moins et s’écrit n -> p + e- + v. L’électron ...

Une forêt tropicale en Antarctique

Vue d'artiste de cette forêt (C) Alfred-Wegener-Institut, James McKay, Creative Commons licence C-BY 4.0
Un sol bien conservé

Des chercheurs de l'Institut Alfred-Wegener ont découvert un sol forestier du Crétacé très bien préservé dans les fonds marins proches du continent Antarctique. ...

COVID-19 : pistes thérapeutiques

© CDC/Dr. Fred Murphy/Sylvia Whitfield

La crise sanitaire qui touche actuellement le monde entier, avec l'épidémie de COVID-19 a déjà causé des dizaines de milliers de morts dans le monde. Les scientifiques se mobilisent pour contrer le plus rapidement possible le virus dévastateur. Traitements, vaccins, ...

La chimie ultrafroide

Les réactions chimiques, une histoire d’électrons

Lors d’une réaction chimique, des molécules appelées réactifs se rencontrent et forment des produits. Par exemple, lors d’une réaction bimoléculaire, deux réactifs A et B - atomes ou molécules - interagissent pour donner un produit C (ou plusieurs produits). Beaucoup moins fréquentes, il existe aussi des réactions monomoléculaires dans lesquelles une molécule M initiale se scinde en deux, ou bien ses atomes se redistribuent pour donner autre chose que M.

Une réaction chimique met toujours en jeu des électrons. Par exemple, dans une réaction bimoléculaire, A peut arracher un électron à B, ou les molécules peuvent mettre en commun un électron, le partager. De cette manière l’électron n’appartient ni à l’un, ni à l’autre mais aux deux. Cela crée une liaison entre A et B qui les rend « inséparables ». La liaison est alors dite « covalente ».

Souvent, un atome au sein d’une molécule va s’en séparer en défaisant une liaison covalente tout en engageant une nouvelle plus favorable, plus forte avec une autre molécule. Pour illustrer cela, prenons la réaction du dichlore Cl2 avec le dihydrogène H2 qui donne du HCl. L’atome chlore préfère engager une liaison avec un atome d’hydrogène qu’avec un atome de chlore. Il en de même pour l’hydrogène dont la molécule se défait pour se lier au chlore. La chimie est ainsi essentiellement une affaire de liaisons covalentes.

Refroidir pour mieux comprendre

Ces réactions sont partout présentes, de la respiration à la cuisine et à la photosynthèse en passant par toutes les industries chimiques… Comment au juste les liaisons covalentes se font-elles et se défont-elles ? En passant par quelles étapes, via quelles séquences ? Il s’agit là de questions dont les réponses sont mal connues. En effet, les chimistes connaissent bien le début et la fin de l’histoire, mais ce qui se passe entre est loin d’être maîtrisé, car cela ne dure que de l’ordre d’un millionième de milliardième de seconde ou femtoseconde (10-15s).

Pour y voir plus clair, il faut observer une réaction chimique au ralenti, c’est à dire à très basse température puisque la température est le reflet de la vitesse d’agitation atomique ou moléculaire. Cette étape vient d’être franchie par une équipe de l’université de Harvard aux USA et du laboratoire Aimé Cotton de l’université de Paris-sud.

La réaction mettait en jeu deux molécules de potassium rubidium, \( KRb \). La réaction s’écrit : \( 2 KRb \to  K_2 + Rb_2 \). Réalisée à 0,5 microkelvin, soit à peine au-dessus du zéro absolu (- 273,15°C), la durée de la réaction n’est plus la femtoseconde, mais de l’ordre de la microseconde soit un milliard de fois plus longtemps, une durée suffisamment longue qui a permis aux chercheurs d’observer l’état intermédiaire \( K_2Rb_2 \).

La chimie ultrafroide va permettre de mieux comprendre et mieux maîtriser les réactions et provoquer des réactions impossibles à température ambiante.

Publié le 09/04/2020

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Le verre se met au vert
Les contraintes environnementales représentent un défi qui pousse l'industrie du verre à innover

Production du verre - Domaine public

Le verre, un matériau traditionnel innovant

La production du verre est une activité millénaire, d’abord artisanale, puis industrielle. S’il existe différents types de verres qui se distinguent par leurs compositions, leurs formes, leurs propriétés, un de leurs points communs est d'avoir un procédé de fabrication très énergivore.

En effet, dans tous les segments de l’industrie verrière (verre plat, verre creux, verres techniques, etc.), la première étape de production du verre consiste dans la fusion, à une température d'environ 1 000°C d’un mélange dit « vitrifiable », constitué de silice et de fondants comprenant principalement des alcalins (sodium, calcium)  (70 % de silice, 15 % d'oxydes de sodium, 10 d'oxyde de calcium plus d'autres additifs minoritaires dans les verres silicosodocalciques tel le verre à bouteille). Cette première étape requiert une grande quantité d’énergie. Elle est suivie par différentes opérations qui nécessitent d'augmenter encore la température au-delà de 1 400°C pour réaliser « l'affinage » (élimination des bulles gazeuses).  Les opérations restantes servent à préparer le verre à son formage, puis au traitement de surface, et au parachèvement, etc. Ces procédés sont maîtrisés par des entreprises parfois très anciennes, qui innovent en permanence pour apporter à ce matériau toujours plus de fonctionnalités, à des coûts maîtrisés. Par exemple, des dépôts multicouches à la surface du verre rendent les vitrages « intelligents » : ils répondent à une sollicitation extérieure, comme c’est le cas pour les vitrages électrochromes dont la transmission lumineuse peut être contrôlée électroniquement.

Défis environnementaux et innovations

Aujourd’hui, l’un des défis majeur du secteur verrier est de diminuer sa consommation énergétique et ses impacts environnementaux, sous la pression des législations et des normes parfois encore plus exigeantes que fixent les acheteurs industriels. D’autant que l’empreinte carbone du verre est liée non seulement à la combustion de combustibles fossiles nécessaire à l’étape de fusion, mais aussi aux émissions de CO2 dues au procédé lui-même (schématiquement : SiO2 + CaCO3 +Na2CO3 -> SiO2.CaO.Na2O + CO2). A 1400 °C, ces émissions s’élèvent à environ 200 kg de CO2 par tonne de verre. L’intégration de 25 à 30 % de calcin issu du recyclage du verre, tend à diminuer l’empreinte carbone des verres recyclés.

De nombreuses pistes d’innovation sont explorées actuellement pour réduire l’empreinte environnementale des procédés verriers : par exemple la mise au point de capteurs permettant un meilleur suivi de la combustion dans les fours, plus généralement l’amélioration du rendement de ces fours, la filtration des émissions, l’ajustement de la composition du mélange vitrifiable visant à faire diminuer la température de fusion (tout en respectant bien sûr les contraintes de qualité), etc.. Déjà employé dans certains procédés verriers, le four électrique fait l’objet de recherches, même si le gaz semble avoir de beaux jours devant lui, quitte à ce qu’il soit du biogaz.

La chimie, la thermodynamique, le génie thermique et le génie des procédés, ainsi que la simulation sont mises à contribution pour tenter d’apporter une réponse technique à ces enjeux industriels. L’augmentation du prix du carbone, lequel traduit d’un point de vue économique l'impact environnemental que représentent les émissions de gaz à effet de serre, devrait jouer un rôle incitatif dans cette tendance de fond dans laquelle les industriels s'engagent.

Publié le 21/01/2019

Librement inspiré par une matinée de conférences à Mines ParisTech organisée par USTV et Carats Innovation. En remerciant Dr Franck Pigeonneau pour ses conseils.

En savoir plus
Le portail de l'industrie du verre http://www.verreonline.fr/index.php

La rédaction de Sciences en ligne
Twitter Facebook Google Plus Linkedin email
Entrées associées