S'inscrire identifiants oubliés ?

Prototypes, recherche, innovation

Une démarche collaborative

Dans le domaine de la recherche, la réalisation des expériences scientifiques requiert souvent de nouveaux instruments, plus perfectionnés, plus sensibles, plus puissants ou tout simplement adaptés à des conditions expérimentales particulières. Ces prototypes de laboratoire sont le fruit ...

Quarks : une combinaison à quatre

Par Ranjithsiji — Travail personnel CC BY-SA 4.0

Le légo des quarks

Contrairement au proton et au neutron, les quarks sont des particules élémentaires, c’est-à-dire des particules qui ne sont pas elles-mêmes constituées d'autres « briques ». L’électron est élémentaire aussi, comme ...

La foudre bat des records

CC BY SA André Karwath aka Aka

Les éclairs et la foudre sont parmi les phénomènes naturels les plus spectaculaires. On estime que chaque seconde l’atmosphère terrestre est traversée par une cinquantaine de ces décharges électriques. En effet, ...

Un moteur moléculaire à effet tunnel

Credit: Empa
Un moteur quantique
Comme d’autres moteurs moléculaires de cette échelle, le fonctionnement de ce nanomoteur conçu à l’Ecole Polytechnique Fédérale de Lausanne (EPFL), met en jeu la mécanique quantique. Mais l’originalité de ce nouveau moteur réside dans le fait que la cause-même ...

Photo-ionisation

A photo of the COLTRIMS reaction microscope built by Alexander Hartung as part of his doctoral research in the experiment hall of the Faculty of Physics. Credit: Alexander Hartung.

La quantité de mouvement de la lumière

Bien que de masse nulle, la lumière possède une quantité de mouvement ...

Vers de nouvelles technologies de chargeurs

Image Vedecom - DR

Des composants indispensables

De nombreux appareils électriques fonctionnant sur piles ont besoin d’être chargés régulièrement. On emploie donc des accumulateurs électrochimiques. Ces derniers sont rechargeables un très grand nombre de fois, contrairement aux piles. Téléphones ...

Un micro-accélérateur de particules

Vue du tunnel du LHC - Auteur : Maximilien Brice, CERN

Des ondes électromagnétiques pour accélérer les particules

Les physiciens de l’infiniment petit emploient des accélérateurs pour communiquer aux particules de très grandes vitesses afin de produire des collisions énergétiques. Au CERN par exemple, grâce à l’accélérateur LHC (le plus puissant du monde) qui fait 27 km de circonférence, les protons se percutent avec une vitesse égale à 99,999999 % de la vitesse de la lumière. En réalité, les protons sont pré-accélérés dans d’autres machines plus petites avant de pénétrer dans le LHC et subir leur accélération ultime. Par ailleurs, pour diverses applications, notamment médicales, des accélérateurs de particules plus modestes sont également nécessaires pour produire certains rayonnements employés en radiothérapie.

Les particules sont accélérées à l’aide de champs électromagnétiques, un peu comme des surfeurs avançant sur leurs vagues. L’énergie des particules augmente grâce aux ondes électromagnétiques qui leur en fournissent. Souvent, ce sont des microondes qui sont employées. Or, l’énergie du photon associé à l’onde est proportionnelle à la fréquence ou - ce qui revient au même - inversement proportionnelle à la longueur d’onde.

Ondes plus courtes, accélérateurs plus petits

L’idée que des chercheurs de l’université de Stanford aux Etats-Unis ont poursuivie consiste justement à accélérer des électrons avec des impulsions lasers infrarouges dont la longueur d’onde est de l’ordre de 1000 à 100 000 fois plus courte que les microondes. Cela signifie aussi des dimensions autant de fois plus petites. La taille d’un accélérateur comme le LHC devrait donc pouvoir être réduite à quelques dizaines de mètres, voire à moins d’un mètre. Pour le moment, les physiciens sont parvenus à accélérer des électrons à 1 keV (mille électronvolts) sur une distance de 25 micromètres. En effet, le « tube » de l’accélérateur a été dessiné sur une puce en silicium de 25 micromètres de long : il s’agit d’un sillon de 0,25 micromètre de large. C’est dans ce sillon que les électrons ont été accélérés à mille volts, grâce à 100 000 impulsions lasers par seconde traversant le sillon perpendiculairement. Afin que l’énergie des électrons atteigne 1 MeV soit 94% de la vitesse de la lumière, il faudrait mille tubes de ce type, soit une longueur de 25 mm. Compte tenu de l’exploit réalisé, les accélérateurs ultra-miniaturisés devraient voir le jour prochainement.

En savoir plus 
Sur l'utilisation des lasers pour accélérer les particules
https://home.cern/fr/news/news/physics/nobel-work-shines-light-particle-physics

Publié le 20/05/2020
 

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Des crustacés pour produire du biocarburant?
Des scientifiques ont découvert qu'un crustacé marin pourrait être la clé de la conversion du bois en biocarburant.

Crustacés xylophages

Les Limnories lignorum ou Limnories du bois sont de petits invertébrés xylophages capables d'ingérer le bois immergé dans l'eau de mer. Ils jouent ainsi un rôle important dans l'écosystème littoral en participant au recyclage de la cellulose et de la lignine, le composant du bois qui lui donne sa rigidité. Ils causent également des dégâts en s'attaquant aux coques des bateaux, aux pontons et autres constructions en bois.

Jusqu'à présent, la faculté des limnories à décomposer la lignine restait un mystère.
En étudiant l'intestin des limnories, une équipe de scientifiques a découvert que l'hémocyanine, protéine responsable de la couleur bleue du sang de ces invertébrés, joue un rôle primordial dans leur capacité à digérer les sucres du bois.

L'hémocyanine est une protéine connue pour son rôle de transporteur de l'oxygène chez certains invertébrés, de la même manière que l'hémoglobine chez les vertébrés.
Alors que l'hémoglobine lie l'oxygène grâce aux atomes de fer de sa structure, qui donnent au sang sa couleur rouge, l'hémocyanine fait de même avec des atomes de cuivre, à l'origine d'une couleur bleue. Les limnories exploitent les propriétés oxydantes de l'hémocyanine pour attaquer les liaisons au sein de la lignine.
 

Une nouvelle piste pour les énergies renouvelables ?

Le Professeur Simon McQueen-Mason, du département de biologie de l'université de York, qui conduit ces recherches, explique que : « Les limnories sont les seuls animaux pourvus d'un système digestif stérile connus à ce jour. Cela rend leur méthode de digestion du bois plus facile à étudier que celle d'autres créatures xylophages comme les termites, chez lesquelles la digestion est assurée par des milliers de microorganismes intestinaux ». 
Il ajoute : « Nous avons découvert que les limnories déchiquètent le bois en le mâchant en de minuscules morceaux avant de se servir de l'hémocyanine pour s'attaquer à la structure de la lignine. »

Les recherches menées par des équipes des universités de York, Portsmouth, Cambridge et Sao Paulo ont révélé que traiter le bois avec l'hémocyanine permet de doubler la quantité de sucre libérée, sans avoir recours à des traitements thermochimiques coûteux et énergivores.

La troisième génération de biocarburants, dont la recherche se focalise pour l'instant sur les microalgues, pourrait bien accueillir ce candidat innatendu. Cette découverte pourrait permettre, à terme, de réduire l'énergie nécessaire pour transformer le bois en biocarburant.

Publié le 14/12/2018

En savoir plus :

Yassa HARBANE
Twitter Facebook Google Plus Linkedin email
Entrées associées