S'inscrire identifiants oubliés ?

Un moteur moléculaire à effet tunnel

Credit: Empa
Un moteur quantique
Comme d’autres moteurs moléculaires de cette échelle, le fonctionnement de ce nanomoteur conçu à l’Ecole Polytechnique Fédérale de Lausanne (EPFL), met en jeu la mécanique quantique. Mais l’originalité de ce nouveau moteur réside dans le fait que la cause-même ...

Photo-ionisation

A photo of the COLTRIMS reaction microscope built by Alexander Hartung as part of his doctoral research in the experiment hall of the Faculty of Physics. Credit: Alexander Hartung.

La quantité de mouvement de la lumière

Bien que de masse nulle, la lumière possède une quantité de mouvement ...

Vers de nouvelles technologies de chargeurs

Image Vedecom - DR

Des composants indispensables

De nombreux appareils électriques fonctionnant sur piles ont besoin d’être chargés régulièrement. On emploie donc des accumulateurs électrochimiques. Ces derniers sont rechargeables un très grand nombre de fois, contrairement aux piles. Téléphones ...

Un micro-accélérateur de particules

Vue du tunnel du LHC - Auteur : Maximilien Brice, CERN

Des ondes électromagnétiques pour accélérer les particules

Les physiciens de l’infiniment petit emploient des accélérateurs pour communiquer aux particules de très grandes vitesses afin de produire des collisions énergétiques. Au CERN par exemple, ...

Tromper une caméra thermique

Caméras thermiques : « filmer la température »

Tout corps, en raison de sa température, émet par sa surface un rayonnement dont le spectre (fréquence ou longueur d’onde en abscisse, intensité en ordonnée) couvre théoriquement toute la gamme des ondes électromagnétiques, l’intensité de l’émission variant ...

Piles bêtavoltaïques au carbone 14 recyclé

Des piles « bêtavoltaïques »

Certains noyaux radioactifs, généralement ceux possédant trop de neutrons par rapport à leurs protons, transmutent un neutron en proton, électron et antineutrino. Cette réaction s’appelle la radioactivité bêta moins et s’écrit n -> p + e- + v. L’électron ...

Une forêt tropicale en Antarctique

Vue d'artiste de cette forêt (C) Alfred-Wegener-Institut, James McKay, Creative Commons licence C-BY 4.0
Un sol bien conservé

Des chercheurs de l'Institut Alfred-Wegener ont découvert un sol forestier du Crétacé très bien préservé dans les fonds marins proches du continent Antarctique. Une carotte sédimentaire a été prélevée en 2017 près du glacier de l'île de Pine Island. L’aspect de cette carotte a retenu l’attention des chercheurs : « la coloration inhabituelle de la couche sédimentaire située entre 27 et 30 m de profondeur différait nettement des couches supérieures » explique Dr. Johann Klages, géologue et principal auteur principal de cette étude, parue dans la revue Nature.

L’excellente préservation de ce sol vieux de 90 millions d’années a permis d'identifier des traces de pollen, de spores, des restes de plantes à fleurs avec leurs cellules individuelles et tout un réseau dense de racines. Ces informations précieuses issues des fossiles suggèrent un paysage étonnant dans l’Antarctique occidentale, à l’époque des Dinosaures : une région couverte par une forêt tropicale marécageuse, avec de nombreux conifères et des fougères arborescentes. L’un des chercheurs, le Professeur Salzmann, compare ainsi cette forêt ancestrale aux forêts qu’on peut trouver actuellement en Nouvelle-Zélande.

Une concentration en dioxyde de carbone revue à la hausse

Le Crétacé correspond à l’une des périodes les plus chaudes sur Terre, au cours des dernières 140 millions d’années, également caractérisée par un niveau élevé des océans.

L'étude approfondie des sédiments suggère une pluviométrie importante et une température annuelle moyenne de 12 °C, et de 19 °C l'été. Pour une région privée de soleil 4 mois par an durant la nuit polaire, ces niveaux sont incompatibles avec la présence d'une calotte glaciaire telle que celle existant actuellement. 

Ces conditions climatiques seraient dues à une forte concentration en dioxyde de carbone dans l'atmosphère, expliquant un climat aussi tempéré sous de telles latitudes (82° S). « Avant cette étude, l’hypothèse généralement admise était que la concentration de dioxyde de carbone moyenne globale durant le Crétacé était d’environ 1 000 parties par million. Mais les résultats de nos simulations font ressortir des concentrations de 1 120 à 1 680 ppm », explique le Professeur Gerrit Lohmann.

Péripéties géologiques 
A l'époque du dépôt de ces sédiments, l'Ouest du continent Antarctique et la Zélande étaient sur le point de se séparer. Après ce phénomène d'expansion des fonds océaniques, le phénomène de subduction prit le dessus, ce qui explique que les couches géologiques se retrouvent sous les fonds marins aujourd'hui. D'autre part, durant la glaciation de l'Antarctique occidental, il y a 30-35 millions d'années, des sédiments du plateau continental ont été charriés par les glaciers jusqu'au fond des mers. Ces deux processus expliquent la situation actuelle de ces couches sédimentaires.

Publié le 20/04/2020

En savoir plus :

L’étude complète publiée sur Nature : https://www.nature.com/articles/s41586-020-2148-5.epdf?referrer_access_token=zdctooWmIkrZLMYcqEl3U9RgN0jAjWel9jnR3ZoTv0MUgcU_4QsUvTrkUoSjhemG2b7YiuOYcHX9_0y__xu3XNKefb2foLtaKkLSuC-ua6aP_DA6Dtn0lXmUktYhjhgi9WwJE1fE_36_XtVA2KwB93HaQ8wk_UUynIoIdrgcd8S9ueUzjsMPvYNwqv-QUVQoWFr6_aFQ4_u83nIfNchI09TYs3o1TMuRAHdsZTEf_ijt3gOUn6b2CaRIKPg1oo3549YEK19x3Har1IJCoasnyTEzSpIvtsbWkZ__2XEfH-s=&tracking_referrer=www.cbsnews.com

 

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


La stabilité du collagène
Des propriétés qui seraient liées à sa structure en triple hélice

(C) Iramis - CEA. La spectrométrie de masse permet de sonder la stabilité de modèles de la triple hélice de collagène après irradiation.

Le collagène

Les propriétés mécaniques des tissus humains tels la peau, les ongles et le cartilage proviennent en majorité de la protéine la plus présente dans le corps : le collagène. Cette molécule confère aux tissus une importante résistance à l'étirement et une élasticité, notamment indispensable aux cartilages pour amortir les chocs. Le collagène s'articule en fibres composées de multiples brins, eux-mêmes constitués de trois protéines enroulées sur elles-mêmes dans une structure en forme d'hélice. Sa solidité est renforcée par l'hydroxylation de la proline, un acide aminé naturel particulièrement abondant dans cette protéine. Toutefois, il était jusque-là impossible de déterminer avec certitudel'origine de cette solidité : est-elle entièrement due à la structure du collagène, ou l'eau environnante joue-t-elle un rôle ?

Les résultats

Dans le cadre du projet IRHEMME financé par la région Normandie, des chercheurs du laboratoire CIMAP à Caen s'intéressent à l'irradiation thérapeutique du cartilage pour un meilleur traitement des tumeurs. Plusieurs expériences ont donc été menées à l’Institut Lumière Matière (à Lyon) sur un modèle de l'hélice du collagène, en l'absence de tout environnement aqueux, et à l'aide de spectrométrie de mobilité ionique - une technique d'analyse chimique structurale en phase gazeuse - et de spectrométrie de masse - pour accéder aux masses moléculaires. Il en résulte que la structure du collagène demeure inchangée en l'absence de solvant, et qu'elle est bien consolidée par des ajouts de groupements hydroxyles sur la proline. D'autres expériences, en collaboration avec des chercheurs de l'Université de Groningen (Pays-Bas), ont abouti à la même conclusion après l'irradiation des structures en triple hélice par rayons X (utilisés en radiothérapie) et ions carbones (utilisés en hadronthérapie). Ces nouvelles données contribueront à une meilleurs compréhension de l'irradiation du cartilage dans les traitements dits locorégionaux des cancers.
Publié le 05/01/2017

Pour en savoir plus sur ces recherches http://iramis.cea.fr/Phocea/Vie_des_labos/Ast/ast.php?t=fait_marquant&id_ast=2795

Yannis Benzaïd
Twitter Facebook Google Plus Linkedin email