S'inscrire identifiants oubliés ?

La foudre bat des records

CC BY SA André Karwath aka Aka

Les éclairs et la foudre sont parmi les phénomènes naturels les plus spectaculaires. On estime que chaque seconde l’atmosphère terrestre est traversée par une cinquantaine de ces décharges électriques. En effet, ...

Un moteur moléculaire à effet tunnel

Credit: Empa
Un moteur quantique
Comme d’autres moteurs moléculaires de cette échelle, le fonctionnement de ce nanomoteur conçu à l’Ecole Polytechnique Fédérale de Lausanne (EPFL), met en jeu la mécanique quantique. Mais l’originalité de ce nouveau moteur réside dans le fait que la cause-même ...

Photo-ionisation

A photo of the COLTRIMS reaction microscope built by Alexander Hartung as part of his doctoral research in the experiment hall of the Faculty of Physics. Credit: Alexander Hartung.

La quantité de mouvement de la lumière

Bien que de masse nulle, la lumière possède une quantité de mouvement ...

Vers de nouvelles technologies de chargeurs

Image Vedecom - DR

Des composants indispensables

De nombreux appareils électriques fonctionnant sur piles ont besoin d’être chargés régulièrement. On emploie donc des accumulateurs électrochimiques. Ces derniers sont rechargeables un très grand nombre de fois, contrairement aux piles. Téléphones ...

Un micro-accélérateur de particules

Vue du tunnel du LHC - Auteur : Maximilien Brice, CERN

Des ondes électromagnétiques pour accélérer les particules

Les physiciens de l’infiniment petit emploient des accélérateurs pour communiquer aux particules de très grandes vitesses afin de produire des collisions énergétiques. Au CERN par exemple, ...

Tromper une caméra thermique

Caméras thermiques : « filmer la température »

Tout corps, en raison de sa température, émet par sa surface un rayonnement dont le spectre (fréquence ou longueur d’onde en abscisse, intensité en ordonnée) couvre théoriquement toute la gamme des ondes électromagnétiques, l’intensité de l’émission variant ...

Piles bêtavoltaïques au carbone 14 recyclé

Des piles « bêtavoltaïques »

Certains noyaux radioactifs, généralement ceux possédant trop de neutrons par rapport à leurs protons, transmutent un neutron en proton, électron et antineutrino. Cette réaction s’appelle la radioactivité bêta moins et s’écrit n -> p + e- + v. L’électron est émis avec une énergie moyenne de 50 keV. On parle de « rayonnement bêta » ou « électron bêta ». L’énergie de l’électron peut être mise à profit en étant convertie en électricité dans un semi-conducteur, de la même manière que l’énergie du photon est employée dans les piles photovoltaïques.

Les piles « bêtavoltaïques » ont ainsi vu le jour au cours des années 1970. La source bêta radioactive employée était le prométhium-147 ou Pm-147. Elles ont été surtout utilisées pour alimenter les pacemakers. Mais les piles « lithium-ion » offrant de meilleures performances, notamment avec une meilleure durée de vie, sont venues les supplanter sans leurs défauts. L’inconvénient majeur de ces « bêtapiles » provenait du fait qu’elles contenaient non seulement du Pm-147 mais aussi du Pm-146 émetteur de rayonnement gamma qu’il fallait arrêter. Aussi, l’essentiel du volume de ces piles était occupé par de la matière employée comme écran pour stopper ce rayonnement. Ces piles ont donc disparu du paysage.

Un moyen d’utiliser le carbone 14

L’idée de l’énergie bêtavoltaïque n’a pas été abandonnée pour autant. Elle a d’ailleurs refait surface récemment avec comme objectif d’employer le carbone-14 comme source d’énergie. Pour mémoire, le carbone occupe la sixième case du tableau périodique des éléments et possède donc 6 électrons et 6 protons. L’essentiel du carbone sur Terre possède également 6 neutrons. C’est le Carbone-12 ou 12C. L’isotope naturellement très rare du carbone (1 atome sur 1012) avec 8 neutrons ou 14C est instable, radioactif bêta. Or, les Britanniques possèdent beaucoup de C-14 dont ils ne savent que faire. En effet, la technologie employée dans certaines de leurs centrales nucléaires fait appel au graphite comme modérateur, pour réduire la vitesse des neutrons. Mais ce bombardement neutronique produit d’importantes quantités de C-14. Ce radioisotope serait ainsi recyclé dans des piles d’une nouvelle génération, employées dans certains dispositifs électroniques, notamment à bord de satellites. Mais une source bêta ne suffit pas, il faut aussi un semi-conducteur. Or, le carbone est un semi-conducteur. Par conséquent les piles envisagées sont formées de carbone avec une part de C-14.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


VKS, l'effet dynamo reproduit en laboratoire
L'expérience de dynamo fluide de la collaboration VKS imite le phénomène de dynamo naturelle, à l'origine des variations des champs magnétiques planétaires et stellaires.

La dynamique du champ magnétique

Le courant électrique que nous utilisons est en grande partie généré par effet dynamo ou en tout cas par des phénomènes similaires. Dans l'Univers, l'effet dynamo joue aussi un rôle clef dans le champ magnétique des planètes et des étoiles. Dans une dynamo solide, l'énergie mécanique du mouvement d'un aimant est convertie en énergie électromagnétique dans la bobine. Dans une dynamo fluide, l'aimant est remplacé par un fluide conducteur dont le mouvement induit un champ magnétique.

En 2007, la collaboration VKS applique cet effet dynamo à du sodium liquide mis en rotation turbulente, d'où son nom d'expérience de dynamo Von-Kármán-Sodium. Dans un cylindre rempli de ce liquide métallique, deux turbines tournent en sens inverse. Lorsque l'on augmente la vitesse de rotation, l'écoulement acquiert toutes les caractéristiques de la turbulence, créant un vortex de liquide, qui génère un champ magnétique. En effet, au-delà d'un certain seuil de turbulence, les variations de champ magnétique au niveau moléculaire se renforcent les unes les autres, créant un champ magnétique à l'échelle macroscopique. En 2017, une équipe a utilisé la géométrie de cette expérience pour réaliser une simulation à haute résolution de cet effet dynamo. Le flux de sodium est modélisé à l'intérieur même du dispositif, non plus seulement au niveau des pales.

Mieux comprendre les champs magnétiques des corps célestes

La plupart des planètes, étoiles et galaxies possèdent un champ magnétique, engendré spontanément par l'effet de dynamo fluide. Dans le cas des dynamos stellaires et planétaires, les écoulements à leur origine sont généralement provoqués par le mouvement d’ensemble de l'astre. L'expérience VKS et ses simulations permettent d'imposer ce type de rotation à un fluide en faisant tourner une turbine plus rapidement que l’autre. Le champ magnétique alors obtenu évolue au cours du temps, avec des renversements erratiques de sa direction, un comportement similaire à ce que l’on sait de l’évolution du champ terrestre au cours des âges.

Certaines caractéristiques de la dynamo d'objets astronomiques à cœur liquide et conducteur peuvent donc être étudiées en laboratoire, dans des situations contrôlées. C'est le cas de la Terre, où le champ magnétique passe d'un état stable à un état présentant des inversions périodiques, tous les cent mille ans environ, le dernier s'étant déroulé il y a sept cent mille ans. En plus de laisser dans les sédiments des traces utiles pour reconstituer le passé géologique de notre planète, les variations du champ magnétique affaiblissent la magnétosphère durant les quelques milliers d'années que dure en moyenne un renversement. Un tel phénomène pourrait exposer nos réseaux de télécommunications aux rayons solaires et cosmiques.

En savoir plus

Étudier sur Terre la génération du champ magnétique à l'intérieur des étoiles et des planètes, sur Le fil Science et Technos, site du CEA

Le champ magnétique de deux aimants, sur Sciences en ligne

Origine du champ magnétique solaire, à propos de la dynamo solaire

La rédaction de Sciences en Ligne
Twitter Facebook Google Plus Linkedin email
Entrées associées