S'inscrire identifiants oubliés ?

La foudre bat des records

CC BY SA André Karwath aka Aka

Les éclairs et la foudre sont parmi les phénomènes naturels les plus spectaculaires. On estime que chaque seconde l’atmosphère terrestre est traversée par une cinquantaine de ces décharges électriques. En effet, ...

Un moteur moléculaire à effet tunnel

Credit: Empa
Un moteur quantique
Comme d’autres moteurs moléculaires de cette échelle, le fonctionnement de ce nanomoteur conçu à l’Ecole Polytechnique Fédérale de Lausanne (EPFL), met en jeu la mécanique quantique. Mais l’originalité de ce nouveau moteur réside dans le fait que la cause-même ...

Photo-ionisation

A photo of the COLTRIMS reaction microscope built by Alexander Hartung as part of his doctoral research in the experiment hall of the Faculty of Physics. Credit: Alexander Hartung.

La quantité de mouvement de la lumière

Bien que de masse nulle, la lumière possède une quantité de mouvement ...

Vers de nouvelles technologies de chargeurs

Image Vedecom - DR

Des composants indispensables

De nombreux appareils électriques fonctionnant sur piles ont besoin d’être chargés régulièrement. On emploie donc des accumulateurs électrochimiques. Ces derniers sont rechargeables un très grand nombre de fois, contrairement aux piles. Téléphones ...

Un micro-accélérateur de particules

Vue du tunnel du LHC - Auteur : Maximilien Brice, CERN

Des ondes électromagnétiques pour accélérer les particules

Les physiciens de l’infiniment petit emploient des accélérateurs pour communiquer aux particules de très grandes vitesses afin de produire des collisions énergétiques. Au CERN par exemple, ...

Tromper une caméra thermique

Caméras thermiques : « filmer la température »

Tout corps, en raison de sa température, émet par sa surface un rayonnement dont le spectre (fréquence ou longueur d’onde en abscisse, intensité en ordonnée) couvre théoriquement toute la gamme des ondes électromagnétiques, l’intensité de l’émission variant ...

Piles bêtavoltaïques au carbone 14 recyclé

Des piles « bêtavoltaïques »

Certains noyaux radioactifs, généralement ceux possédant trop de neutrons par rapport à leurs protons, transmutent un neutron en proton, électron et antineutrino. Cette réaction s’appelle la radioactivité bêta moins et s’écrit n -> p + e- + v. L’électron est émis avec une énergie moyenne de 50 keV. On parle de « rayonnement bêta » ou « électron bêta ». L’énergie de l’électron peut être mise à profit en étant convertie en électricité dans un semi-conducteur, de la même manière que l’énergie du photon est employée dans les piles photovoltaïques.

Les piles « bêtavoltaïques » ont ainsi vu le jour au cours des années 1970. La source bêta radioactive employée était le prométhium-147 ou Pm-147. Elles ont été surtout utilisées pour alimenter les pacemakers. Mais les piles « lithium-ion » offrant de meilleures performances, notamment avec une meilleure durée de vie, sont venues les supplanter sans leurs défauts. L’inconvénient majeur de ces « bêtapiles » provenait du fait qu’elles contenaient non seulement du Pm-147 mais aussi du Pm-146 émetteur de rayonnement gamma qu’il fallait arrêter. Aussi, l’essentiel du volume de ces piles était occupé par de la matière employée comme écran pour stopper ce rayonnement. Ces piles ont donc disparu du paysage.

Un moyen d’utiliser le carbone 14

L’idée de l’énergie bêtavoltaïque n’a pas été abandonnée pour autant. Elle a d’ailleurs refait surface récemment avec comme objectif d’employer le carbone-14 comme source d’énergie. Pour mémoire, le carbone occupe la sixième case du tableau périodique des éléments et possède donc 6 électrons et 6 protons. L’essentiel du carbone sur Terre possède également 6 neutrons. C’est le Carbone-12 ou 12C. L’isotope naturellement très rare du carbone (1 atome sur 1012) avec 8 neutrons ou 14C est instable, radioactif bêta. Or, les Britanniques possèdent beaucoup de C-14 dont ils ne savent que faire. En effet, la technologie employée dans certaines de leurs centrales nucléaires fait appel au graphite comme modérateur, pour réduire la vitesse des neutrons. Mais ce bombardement neutronique produit d’importantes quantités de C-14. Ce radioisotope serait ainsi recyclé dans des piles d’une nouvelle génération, employées dans certains dispositifs électroniques, notamment à bord de satellites. Mais une source bêta ne suffit pas, il faut aussi un semi-conducteur. Or, le carbone est un semi-conducteur. Par conséquent les piles envisagées sont formées de carbone avec une part de C-14.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Thomas Pesquet redescend sur Terre
Après une mission scientifique de deux cents jours à bord de la station spatiale internationale, la capsule Soyouz ramenant Thomas Pesquet et Oleg Novitski a atterri sur Terre.

La fin d'une mission de deux cents jours

Ce vendredi 2 juin 2017, le spationaute français Thomas Pesquet et le cosmonaute russe Oleg Novitski ont quitté l'ISS (International Space Station), qui gravite à 400 km de la Terre. Après un séjour de près de 200 jours dans l'espace, soit six mois et demi, dans à peine 400 m3 habitables, il leur a fallu trois heures et une vingtaine de minutes pour atterrir, vers 16 h 10 selon l'heure de Paris, dans les steppes du Kazakhstan.

Lors de cette mission, Thomas Pesquet a réalisé deux sorties dans l'espace, qui se sont parfaitement bien déroulées. Il a également participé à 78 expériences scientifiques prévues dans son programme, dont sept sous l’égide du CNES (Centre national des études spatiales). Le tout en partageant son aventure sur les réseaux sociaux.

Les étapes d'une redescente

Les deux hommes ont quitté l'ISS à bord du vaisseau russe Soyouz, qui s'est désarrimé de la station spatiale un peu avant 13 heures. Deux heures et demie plus tard, situé à une distance sans danger de la station, les moteurs principaux de la capsule Soyouz sont activés pendant un peu moins de cinq minutes pour la manœuvre de désorbitation. En amorçant sa descente, il se scinde en trois parties. Le module orbital et le module de service s'éloignent et brûlent dans l'atmosphère, tandis que le module de descente se réoriente pour mettre en avant son bouclier thermique. En traversant l'atmosphère, les frottements lui font affronter des températures allant jusqu'à 1600 °C, ce qui coupe momentanément les communications radio.

Lors de la rentrée atmosphérique, du fait de la décélération, les voyageurs de l'espace retrouvent brutalement la gravité terrestre, en ressentant jusqu'à quatre fois leur poids. À une dizaine de kilomètres d'altitude, les parachutes se déploient, freinant encore Soyouz, suivis de la grande voile de mille mètres carrés. À quelques mètres de la surface, enfin, les rétrofusées finissent de ralentir le module. Dès que celui-ci touche le sol, les équipes de récupération et de secours se dirigent vers le point d'atterrissage. Les deux hommes sont extraits de la capsule, avant de suivre une batterie d’examens médicaux à visée scientifique, qui permettront à une équipe médicale de l'Agence spatiale européenne de surveiller leur réadaptation à la gravité.

En savoir plus

Mission Proxima, un vol pour l'avenir, sur Sciences en ligne

Thomas Pesquet en contact radio avec des élèves, sur Explorathèque

Le live du vendredi 2 juin 2017, sur franceinfo

Le site Proxima, du CNES

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email