S'inscrire identifiants oubliés ?

La foudre bat des records

CC BY SA André Karwath aka Aka

Les éclairs et la foudre sont parmi les phénomènes naturels les plus spectaculaires. On estime que chaque seconde l’atmosphère terrestre est traversée par une cinquantaine de ces décharges électriques. En effet, ...

Un moteur moléculaire à effet tunnel

Credit: Empa
Un moteur quantique
Comme d’autres moteurs moléculaires de cette échelle, le fonctionnement de ce nanomoteur conçu à l’Ecole Polytechnique Fédérale de Lausanne (EPFL), met en jeu la mécanique quantique. Mais l’originalité de ce nouveau moteur réside dans le fait que la cause-même ...

Photo-ionisation

A photo of the COLTRIMS reaction microscope built by Alexander Hartung as part of his doctoral research in the experiment hall of the Faculty of Physics. Credit: Alexander Hartung.

La quantité de mouvement de la lumière

Bien que de masse nulle, la lumière possède une quantité de mouvement ...

Vers de nouvelles technologies de chargeurs

Image Vedecom - DR

Des composants indispensables

De nombreux appareils électriques fonctionnant sur piles ont besoin d’être chargés régulièrement. On emploie donc des accumulateurs électrochimiques. Ces derniers sont rechargeables un très grand nombre de fois, contrairement aux piles. Téléphones ...

Un micro-accélérateur de particules

Vue du tunnel du LHC - Auteur : Maximilien Brice, CERN

Des ondes électromagnétiques pour accélérer les particules

Les physiciens de l’infiniment petit emploient des accélérateurs pour communiquer aux particules de très grandes vitesses afin de produire des collisions énergétiques. Au CERN par exemple, ...

Tromper une caméra thermique

Caméras thermiques : « filmer la température »

Tout corps, en raison de sa température, émet par sa surface un rayonnement dont le spectre (fréquence ou longueur d’onde en abscisse, intensité en ordonnée) couvre théoriquement toute la gamme des ondes électromagnétiques, l’intensité de l’émission variant ...

Piles bêtavoltaïques au carbone 14 recyclé

Des piles « bêtavoltaïques »

Certains noyaux radioactifs, généralement ceux possédant trop de neutrons par rapport à leurs protons, transmutent un neutron en proton, électron et antineutrino. Cette réaction s’appelle la radioactivité bêta moins et s’écrit n -> p + e- + v. L’électron est émis avec une énergie moyenne de 50 keV. On parle de « rayonnement bêta » ou « électron bêta ». L’énergie de l’électron peut être mise à profit en étant convertie en électricité dans un semi-conducteur, de la même manière que l’énergie du photon est employée dans les piles photovoltaïques.

Les piles « bêtavoltaïques » ont ainsi vu le jour au cours des années 1970. La source bêta radioactive employée était le prométhium-147 ou Pm-147. Elles ont été surtout utilisées pour alimenter les pacemakers. Mais les piles « lithium-ion » offrant de meilleures performances, notamment avec une meilleure durée de vie, sont venues les supplanter sans leurs défauts. L’inconvénient majeur de ces « bêtapiles » provenait du fait qu’elles contenaient non seulement du Pm-147 mais aussi du Pm-146 émetteur de rayonnement gamma qu’il fallait arrêter. Aussi, l’essentiel du volume de ces piles était occupé par de la matière employée comme écran pour stopper ce rayonnement. Ces piles ont donc disparu du paysage.

Un moyen d’utiliser le carbone 14

L’idée de l’énergie bêtavoltaïque n’a pas été abandonnée pour autant. Elle a d’ailleurs refait surface récemment avec comme objectif d’employer le carbone-14 comme source d’énergie. Pour mémoire, le carbone occupe la sixième case du tableau périodique des éléments et possède donc 6 électrons et 6 protons. L’essentiel du carbone sur Terre possède également 6 neutrons. C’est le Carbone-12 ou 12C. L’isotope naturellement très rare du carbone (1 atome sur 1012) avec 8 neutrons ou 14C est instable, radioactif bêta. Or, les Britanniques possèdent beaucoup de C-14 dont ils ne savent que faire. En effet, la technologie employée dans certaines de leurs centrales nucléaires fait appel au graphite comme modérateur, pour réduire la vitesse des neutrons. Mais ce bombardement neutronique produit d’importantes quantités de C-14. Ce radioisotope serait ainsi recyclé dans des piles d’une nouvelle génération, employées dans certains dispositifs électroniques, notamment à bord de satellites. Mais une source bêta ne suffit pas, il faut aussi un semi-conducteur. Or, le carbone est un semi-conducteur. Par conséquent les piles envisagées sont formées de carbone avec une part de C-14.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Des imprimantes pour réparer le genou
Pour faciliter la réparation des genoux, la bio-impression d'hydrogel ouvre la voie à des implants biocompatibles, adaptés à chaque cas et à terme peu coûteux.

Le ménisque, un cartilage précieux

Le genou humain est un mécanisme complexe, dont la blessure se montre handicapante, ainsi que difficile et coûteuse à réparer. Chacun de nos genoux possède deux ménisques, des petits cartilages situés entre le fémur et le tibia sans s’interposer complètement entre les deux os. Le ménisque se compose de deux couches complémentaires, un milieu rigide et une couche extérieure douce. En laissant persister un contact entre le cartilage du fémur et celui du tibia, le ménisque amortit et stabilise le genou, en autorisant des déplacements.

Contrairement à l'os, innervé et vascularisé, le cartilage est un tissu qui se régénère peu et cicatrise difficilement. Les genoux blessés nécessitent donc souvent une intervention chirurgicale, comprenant le retrait du ménisque endommagé et le remplacement par des implants. Ceux-ci sont en général incompatibles avec les tissus biologiques environnants, car formés de plastique. De plus, ils constituent une réplique inadaptée de l’original, en terme de solidité et d'élasticité.

Des implants en bio-impression

Un candidat privilégié pour le développement d'implants biocompatibles, sur-mesure et peu coûteux est l’hydrogel. Les hydrogels sont des polymères, constitués en grande partie d’eau et aussi flexibles que les tissus vivants. Dans cette optique, une équipe de chercheur·euse·s travaillent à combiner un hydrogel solide et un hydrogel extensible, afin d’obtenir un biomatériau aussi proche du cartilage que possible. Une argile de nanoparticules a été ajoutée à l'hydrogel, de manière à rendre la substance souple en cas de tension avant de se durcir rapidement.

L’hydrogel, imprimable en trois dimensions, permet aux bio-ingénieurs de créer des pièces de rechange artificielles sur mesure. En utilisant des modèles virtuels des parties du corps d’un patient à partir d’une tomographie par ordinateur ou d’une analyse d’imagerie par résonance magnétique, les chirurgien·ne·s peuvent fournir des implants qui correspondent à l’original. Un ménisque de remplacement avec le nouvel hydrogel a pu être imprimé par l'équipe à bas prix en seulement un jour. Ces implants nouvelle génération devraient, à terme, permettre de reconstituer intégralement une articulation abîmée.

En savoir plus

Un hydrogel analogue au cartilage pour des implants de genou imprimables en 3D, sur InfoHightech

La bio-impression, sur Sciences en ligne

Imprimer de la peau artificielle, sur Sciences en ligne

Réparer le cartilage, un dossier de l'INSERM

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email
Entrées associées