S'inscrire identifiants oubliés ?

La foudre bat des records

CC BY SA André Karwath aka Aka

Les éclairs et la foudre sont parmi les phénomènes naturels les plus spectaculaires. On estime que chaque seconde l’atmosphère terrestre est traversée par une cinquantaine de ces décharges électriques. En effet, ...

Un moteur moléculaire à effet tunnel

Credit: Empa
Un moteur quantique
Comme d’autres moteurs moléculaires de cette échelle, le fonctionnement de ce nanomoteur conçu à l’Ecole Polytechnique Fédérale de Lausanne (EPFL), met en jeu la mécanique quantique. Mais l’originalité de ce nouveau moteur réside dans le fait que la cause-même ...

Photo-ionisation

A photo of the COLTRIMS reaction microscope built by Alexander Hartung as part of his doctoral research in the experiment hall of the Faculty of Physics. Credit: Alexander Hartung.

La quantité de mouvement de la lumière

Bien que de masse nulle, la lumière possède une quantité de mouvement ...

Vers de nouvelles technologies de chargeurs

Image Vedecom - DR

Des composants indispensables

De nombreux appareils électriques fonctionnant sur piles ont besoin d’être chargés régulièrement. On emploie donc des accumulateurs électrochimiques. Ces derniers sont rechargeables un très grand nombre de fois, contrairement aux piles. Téléphones ...

Un micro-accélérateur de particules

Vue du tunnel du LHC - Auteur : Maximilien Brice, CERN

Des ondes électromagnétiques pour accélérer les particules

Les physiciens de l’infiniment petit emploient des accélérateurs pour communiquer aux particules de très grandes vitesses afin de produire des collisions énergétiques. Au CERN par exemple, ...

Tromper une caméra thermique

Caméras thermiques : « filmer la température »

Tout corps, en raison de sa température, émet par sa surface un rayonnement dont le spectre (fréquence ou longueur d’onde en abscisse, intensité en ordonnée) couvre théoriquement toute la gamme des ondes électromagnétiques, l’intensité de l’émission variant ...

Piles bêtavoltaïques au carbone 14 recyclé

Des piles « bêtavoltaïques »

Certains noyaux radioactifs, généralement ceux possédant trop de neutrons par rapport à leurs protons, transmutent un neutron en proton, électron et antineutrino. Cette réaction s’appelle la radioactivité bêta moins et s’écrit n -> p + e- + v. L’électron est émis avec une énergie moyenne de 50 keV. On parle de « rayonnement bêta » ou « électron bêta ». L’énergie de l’électron peut être mise à profit en étant convertie en électricité dans un semi-conducteur, de la même manière que l’énergie du photon est employée dans les piles photovoltaïques.

Les piles « bêtavoltaïques » ont ainsi vu le jour au cours des années 1970. La source bêta radioactive employée était le prométhium-147 ou Pm-147. Elles ont été surtout utilisées pour alimenter les pacemakers. Mais les piles « lithium-ion » offrant de meilleures performances, notamment avec une meilleure durée de vie, sont venues les supplanter sans leurs défauts. L’inconvénient majeur de ces « bêtapiles » provenait du fait qu’elles contenaient non seulement du Pm-147 mais aussi du Pm-146 émetteur de rayonnement gamma qu’il fallait arrêter. Aussi, l’essentiel du volume de ces piles était occupé par de la matière employée comme écran pour stopper ce rayonnement. Ces piles ont donc disparu du paysage.

Un moyen d’utiliser le carbone 14

L’idée de l’énergie bêtavoltaïque n’a pas été abandonnée pour autant. Elle a d’ailleurs refait surface récemment avec comme objectif d’employer le carbone-14 comme source d’énergie. Pour mémoire, le carbone occupe la sixième case du tableau périodique des éléments et possède donc 6 électrons et 6 protons. L’essentiel du carbone sur Terre possède également 6 neutrons. C’est le Carbone-12 ou 12C. L’isotope naturellement très rare du carbone (1 atome sur 1012) avec 8 neutrons ou 14C est instable, radioactif bêta. Or, les Britanniques possèdent beaucoup de C-14 dont ils ne savent que faire. En effet, la technologie employée dans certaines de leurs centrales nucléaires fait appel au graphite comme modérateur, pour réduire la vitesse des neutrons. Mais ce bombardement neutronique produit d’importantes quantités de C-14. Ce radioisotope serait ainsi recyclé dans des piles d’une nouvelle génération, employées dans certains dispositifs électroniques, notamment à bord de satellites. Mais une source bêta ne suffit pas, il faut aussi un semi-conducteur. Or, le carbone est un semi-conducteur. Par conséquent les piles envisagées sont formées de carbone avec une part de C-14.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Les points forts de l'agroforesterie
L'agroforesterie, en associant les arbres et les cultures, améliore la santé des sols et des écosystèmes, notamment à travers l'atténuation du changement climatique et la résilience face à ses effets.

L'agroforesterie et la transition agroécologique

Le système d'agriculture actuel doit se transformer afin de répondre aux défis de la production agroalimentaire, du climat et des métiers de la paysannerie. Omniprésente dans les pays tropicaux, l'agroforesterie suit la démarche des techniques d'agroécologie avec une gestion des terres qui associe arbres et cultures. Au-delà des agricultures biologique ou raisonnée visant à diminuer l'utilisation des produits phytosanitaires ou des intrants, elle se base sur les principes de l'écologie scientifique en vue de favoriser le mimétisme avec les écosystèmes naturels.

Le principe de base est de choisir le bon couple arbre-culture, de manière à favoriser la complémentarité entre les deux. Des exemples : associer une culture aux racines superficielles à un arbre aux racines profondes, associer une culture à un arbre qui perd ses feuilles lorsque la culture a besoin de lumière, introduire des plantes herbacées dont le cycle de croissance est décalé dans le temps par rapport à celui des arbres auxquelles elles sont associées. Ce couplage est de fait plus complexe que pour une monoculture, ce qui nécessite de faire appel à des compétences et des formations agronomiques poussées. C'est encore plus le cas avec les agroforêts, des associations complexes avec plusieurs espèces d’arbres.

Le choix du couple dépend aussi de la zone agro-climatique, ainsi que des effets bénéfiques souhaités pour le système agroforestier. L'objectif peut être de nature écologique, dans une logique de services écosystémiques. Planter des arbres au-dessus de caféiers, par exemple, leur assure de l'ombrage et enrichit le sol en azote. Les arbres eux-mêmes peuvent fournir une production qui s'ajoute à celle des cultures. Pas seulement du bois, mais aussi des fruits, du fourrage pour les animaux et des substances médicamenteuses. Il existe ainsi une immense variété de couples possible entres les arbres et les cultures, selon l'endroit du monde où l'on se trouve et selon la complémentarité recherchée.

L'agroforesterie et la santé des écosystèmes

Les arbres sont des puits de carbone, puisqu'ils absorbent de grandes quantités du gaz à effet de serre CO2 (dioxyde de carbone). Le carbone atmosphérique est piégé sous forme de matière organique dans la biomasse, d'abord les racines, le tronc et les feuilles des arbres, puis l'humus et la matière organique du sol. Le stockage de ce carbone diminue donc l'effet de serre tandis que les associations agroforestières tamponnent les variations climatiques, ce qui aide les systèmes de production agricole à mieux supporter les chocs climatiques. L’agroforesterie est ainsi classée par les spécialistes du GIEC (Groupe d’experts intergouvernemental sur l’évolution du climat) parmi les méthodes de mise en valeur du sol capables de renforcer l’adaptation au changement climatique et son atténuation. Son exemple est de plus en plus cité pour illustrer cette synergie.

La présence d'arbres dans, autour et à proximité des parcelles agricoles contribue ainsi à l'amélioration de la qualité des sols en termes de fertilité et de biodiversité. La couverture et l'enrichissement en matière organique des sols en améliorent les propriétés, de sorte qu’ils retiennent mieux l’eau et les nutriments dont les plantes ont besoin. La présence d'un couvert permanent aide en particulier à lutter contre l'érosion des terres, par exemple en cas de pluies importantes. Si les arbres associés aux cultures fixent l'azote, notamment avec la symbiose entre les bactéries de type Rhizobium et des plantes de la famille des légumineuses, le sol sera également enrichi en azote. De même, le sol peut être enrichi en phosphore grâce à la symbiose mycorhizienne entre des champignons et des arbres.

Dans ces nouveaux paysages de bocages agroforestiers, les arbres créent de l’hétérogénéité. Ils participent à la conservation de la biodiversité et contribuent à l'équilibre des agro-écosystèmes dans lesquels ils s'insèrent. Plantés dans les parcelles, au bord des chemins ou autour des ruisseaux, les grands arbres structurent l'espace rural et font s'inscrire l'agroforesterie dans une démarche à l'échelle du paysage.

Article réalisé à partir d'un entretien avec Emmanuel Torquebiau, chercheur au CIRAD Montpellier et expert en écologie tropicale et agroforesterie.

En savoir plus

L'agriculture de demain, l'alliée du climat ?, sur Sciences en ligne

L'enjeu de la préservation des sols, sur Sciences en ligne

Les billets de blogue d'Emmanuel Torquebiau, sur The Conversation

L'agroforesterie et la recherche agronomique, sur Explorathèque

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email