S'inscrire identifiants oubliés ?

La foudre bat des records

CC BY SA André Karwath aka Aka

Les éclairs et la foudre sont parmi les phénomènes naturels les plus spectaculaires. On estime que chaque seconde l’atmosphère terrestre est traversée par une cinquantaine de ces décharges électriques. En effet, ...

Un moteur moléculaire à effet tunnel

Credit: Empa
Un moteur quantique
Comme d’autres moteurs moléculaires de cette échelle, le fonctionnement de ce nanomoteur conçu à l’Ecole Polytechnique Fédérale de Lausanne (EPFL), met en jeu la mécanique quantique. Mais l’originalité de ce nouveau moteur réside dans le fait que la cause-même ...

Photo-ionisation

A photo of the COLTRIMS reaction microscope built by Alexander Hartung as part of his doctoral research in the experiment hall of the Faculty of Physics. Credit: Alexander Hartung.

La quantité de mouvement de la lumière

Bien que de masse nulle, la lumière possède une quantité de mouvement ...

Vers de nouvelles technologies de chargeurs

Image Vedecom - DR

Des composants indispensables

De nombreux appareils électriques fonctionnant sur piles ont besoin d’être chargés régulièrement. On emploie donc des accumulateurs électrochimiques. Ces derniers sont rechargeables un très grand nombre de fois, contrairement aux piles. Téléphones ...

Un micro-accélérateur de particules

Vue du tunnel du LHC - Auteur : Maximilien Brice, CERN

Des ondes électromagnétiques pour accélérer les particules

Les physiciens de l’infiniment petit emploient des accélérateurs pour communiquer aux particules de très grandes vitesses afin de produire des collisions énergétiques. Au CERN par exemple, ...

Tromper une caméra thermique

Caméras thermiques : « filmer la température »

Tout corps, en raison de sa température, émet par sa surface un rayonnement dont le spectre (fréquence ou longueur d’onde en abscisse, intensité en ordonnée) couvre théoriquement toute la gamme des ondes électromagnétiques, l’intensité de l’émission variant ...

Piles bêtavoltaïques au carbone 14 recyclé

Des piles « bêtavoltaïques »

Certains noyaux radioactifs, généralement ceux possédant trop de neutrons par rapport à leurs protons, transmutent un neutron en proton, électron et antineutrino. Cette réaction s’appelle la radioactivité bêta moins et s’écrit n -> p + e- + v. L’électron est émis avec une énergie moyenne de 50 keV. On parle de « rayonnement bêta » ou « électron bêta ». L’énergie de l’électron peut être mise à profit en étant convertie en électricité dans un semi-conducteur, de la même manière que l’énergie du photon est employée dans les piles photovoltaïques.

Les piles « bêtavoltaïques » ont ainsi vu le jour au cours des années 1970. La source bêta radioactive employée était le prométhium-147 ou Pm-147. Elles ont été surtout utilisées pour alimenter les pacemakers. Mais les piles « lithium-ion » offrant de meilleures performances, notamment avec une meilleure durée de vie, sont venues les supplanter sans leurs défauts. L’inconvénient majeur de ces « bêtapiles » provenait du fait qu’elles contenaient non seulement du Pm-147 mais aussi du Pm-146 émetteur de rayonnement gamma qu’il fallait arrêter. Aussi, l’essentiel du volume de ces piles était occupé par de la matière employée comme écran pour stopper ce rayonnement. Ces piles ont donc disparu du paysage.

Un moyen d’utiliser le carbone 14

L’idée de l’énergie bêtavoltaïque n’a pas été abandonnée pour autant. Elle a d’ailleurs refait surface récemment avec comme objectif d’employer le carbone-14 comme source d’énergie. Pour mémoire, le carbone occupe la sixième case du tableau périodique des éléments et possède donc 6 électrons et 6 protons. L’essentiel du carbone sur Terre possède également 6 neutrons. C’est le Carbone-12 ou 12C. L’isotope naturellement très rare du carbone (1 atome sur 1012) avec 8 neutrons ou 14C est instable, radioactif bêta. Or, les Britanniques possèdent beaucoup de C-14 dont ils ne savent que faire. En effet, la technologie employée dans certaines de leurs centrales nucléaires fait appel au graphite comme modérateur, pour réduire la vitesse des neutrons. Mais ce bombardement neutronique produit d’importantes quantités de C-14. Ce radioisotope serait ainsi recyclé dans des piles d’une nouvelle génération, employées dans certains dispositifs électroniques, notamment à bord de satellites. Mais une source bêta ne suffit pas, il faut aussi un semi-conducteur. Or, le carbone est un semi-conducteur. Par conséquent les piles envisagées sont formées de carbone avec une part de C-14.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Imprimer de la peau artificielle
L'impression 3D de tissus humains grâce au laser se développe, avec à la clé des greffes de peau et une alternative à l'exploitation animale dans les essais en cosmétiques.

Réaliser des bio-impressions de peau

La peau est une structure complexe, organisée en trois couches de tissus (épiderme, derme, hypoderme). Il s'agit du plus grand organe du corps humain, puisqu'elle représente environ 16% de son poids total. Sa fonction principale est de former une barrière de protection envers le milieu extérieur, qu'il s'agisse des agressions thermiques et mécaniques ou des contaminants qui y sont présents.

L'impression 3D, qui permet la création d'un objet tridimensionnel par l'empilement de couches, a ouvert de très nombreux champs d'expérimentation. Jean-Christophe Fricain, directeur de l'unité Bioingénierie Tissulaire de l'INSERM à Bordeaux, souligne la différence avec la bio-impression, où « il s'agit de la fabrication additive de matériel non plus inerte mais biologique. Il existe plusieurs technologies de bio-impression. On peut utiliser des seringues qui se déplacent grâce à un bras piloté par ordinateur, pour pousser un hydrogel contenant du matériel biologique. On peut mettre au point un système par jet d'encre, qui émet des gouttelettes comme les imprimantes classiques mais dépose là aussi un hydrogel relativement fluide. On peut encore utiliser l'énergie laser pour faire des transferts de goutte comme le fait l'entreprise Poietis, c'est-à-dire des transferts de matière vivante : on combine alors différents composants biologiques, comme les cellules ou la matrice extra-cellulaire, pour organiser des structures qui ressemblent au tissu vivant. »

Une collaboration entre une entreprise de Pessac et l'INSERM a en effet mené à la mise en point une machine capable de produire de la matière vivante grâce à de la lumière laser. Trois semaines sont nécessaires pour reproduire de la peau. L'imprimante dépose, couche par couche, des micro-gouttes contenant des cellules selon un modèle numérique inspirés de tissus existants. Grâce à sa très haute définition, de l'ordre de vingt microns soit la taille maximale d'une cellule, le laser peut reproduire la complexité des tissus avec une grande précision et assurer leur auto-organisation. De plus, il assure la viabilité des cellules à hauteur de plus de 95%.

Des applications en clinique, en pharmacologie et en cosmétique

« À l'échelle micrométrique, l'impression biologique permet d'étudier le comportement de certaines organisation cellulaires, pour une recherche plutôt fondamentale. À l'échelle millimétrique, représenter la partie fonctionnelle d'un organe donne des applications dans le domaine de la toxicologie et de l'étude des médicaments, puisqu'on peut imaginer par exemple la réalisation de micro-modèle tumoraux sur lesquels tester des chimiothérapies avant de l'appliquer aux individus. À l'échelle centimétrique, l'enjeu est plutôt de reproduire des organes. »

À cette échelle des organes et des tissus, les enjeux de la bio-impression dans le domaine médical sont souvent médiatisés, avec l'idée par exemple de créer des greffons de peau à partir des cellules souches d'un·e patient·e. De telles techniques offrent l'avantage d'éviter tout risque de rejet. « La peau est un tissu relativement simple, pas vascularisé et assez superficiel, dont l'étude a d'importants débouchés notamment cosmétique. Cela explique que les techniques de bio-impression aboutissent plus rapidement dans ce cas, alors que les applications sur des tissus complexes comme les travaux de l'entreprise Organovo sur le foie se font à des échelles de temps plus lointaines. »

En cosmétique, les recherches de méthodes alternative à l'exploitation animale se sont accélérées depuis l’annonce en 1993 de l’interdiction progressive des essais sur les animaux pour les cosmétiques vendus en Europe, un processus achevé en 2013 et qui donnent l'exemple à d'autres pays. Plus de 200 méthodes alternatives à la recherche animale ont déjà été développées et validées par l’OCDE, parmi lesquelles le microdosage, les techniques d’imagerie non invasives, les simulations sur ordinateur et les tests in vitro.

En se servant d’une structure semblable à l’épiderme humain afin de mesurer l’irritation de la peau provoquée par les produits chimiques présents dans les cosmétiques, le développement de la peau artificielle constitue une alternative prometteuse aux expériences sur les animaux. Les recherches aboutissent à des peaux de plus en plus proches de la réalité, même s'il n’existe pas encore de modèle de peau complète et fonctionnelle à cause de la complexité de cet organe.

En savoir plus

Reconstruire la peau, au plus près du réel, Le Monde – Sciences

Cosmétiques : vers la fin des tests sur les animaux ?, Le magazine du monde

Impression 3D Laser du vivant : une approche innovante à Bordeaux, dossier de l'INSERM

Le site de Poietis, une entreprise de Pessac qui conçoit et développe des tissus biologiques humains pour des applications de recherche et en médecine régénératrice

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email
Entrées associées