S'inscrire identifiants oubliés ?

Du ribose dans les météorites

Le ribose, sucre vital

L’ADN - ou acide désoxyribonucléique - est formé en particulier d’un sucre, le désoxyribose, lui-même un dérivé du ribose (C5H10O5). Plus précisément, dans le désoxyribose (C5H10O4) un groupement hydroxyle (-OH) du ribose ...

Un nouveau comportement des électrons

Cooper pairs - Tem5psu CC BY-SA
Isolants, conducteurs et semi-conducteurs

Le comportement d’un solide cristallin relativement au courant électrique, peut être celui d’un isolant, d’un semi-conducteur, d’un métal ou d’un supraconducteur. Dans les isolants, ...

Interférences et biomolécules

CC BY-SA 4.0 Alexandre Gondran
Les expériences d’interférences mettant en jeu des molécules de plus en plus grosses et lourdes révèlent que les lois de la mécanique quantique sont applicables bien au-delà du monde de « l’infiniment petit » ...

Anomalie de dilatation thermique

By Simon Mer - Own work, CC BY-SA 4.0
Généralement, les matériaux se dilatent lorsqu’ils sont chauffés. La raison en est qu’une élévation de température correspond à une augmentation de l’agitation des atomes, or cette agitation n’est pas symétrique. ...

Nucléosythèse et étoiles à neutrons

(C) NASA - Nébuleuse du Crabe, marquée par la présence d'une étoile à neutron
Mis à part quelques éléments légers comme l’hydrogène, l’hélium, le lithium… produits peu après le big bang, tous les noyaux atomiques naturels ...

Des réfrigérateurs à torsion

Impératifs environnementaux

Près de 20% de l’énergie électrique produite dans le monde est consommée par les climatiseurs, réfrigérateurs et congélateurs. De plus, ces machines frigorifiques utilisent des fluides frigorigènes dont la plupart sont des gaz ...

Les batteries au lithium pour un Nobel

De la petite électronique à la voiture électrique, la pile lithium-ion - non rechargeable - et surtout l'accumulateur - rechargeable - ont envahi notre quotidien. Sans cette technologie lithium-ion, téléphones mobiles, tablettes et autres appareils nomades n’existeraient pas ou seraient ...

Du champagne supersonique

Physique du bouchon de champagne

Tout le monde le sait, lorsqu’une bouteille de champagne est débouchée, le bouchon est souvent violemment propulsé… ce qui peut être dangereux s’il percute l’œil. La raison pour laquelle le bouchon saute à environ 50 km/h vient du fait qu’une bouteille de champagne contient 8,8 g de dioxyde de carbone (CO2) soit 0,2 mole, dont l’essentiel est dissout dans le liquide, le reste se trouvant sous pression dans le goulot, en équilibre avec le CO2 dissout. A 20°C, la pression dans le goulot vaut 7 fois la pression atmosphérique, tandis qu’à 30°C, elle lui est 10 fois supérieure. Le bouchon est donc plus fortement poussé vers l’extérieur que l’air ambiant à la pression atmosphérique le pousse vers l’intérieur. Aussitôt après l’expulsion du bouchon, un « nuage » de condensation apparaît au-dessus du goulot. En effet, lors de son expansion, le CO2 pousse le bouchon vers l’extérieur et lutte contre la pression atmosphérique, si bien que l’énergie qu’il dépense pour effectuer ce travail se traduit par une chute de température, le gaz n’ayant pas le temps d’équilibrer sa température avec le milieu ambiant par échange de chaleur : la détente s’effectue de manière adiabatique (sans échange de chaleur). La chute de température provoque la condensation de la vapeur d’eau en liquide et même solide avec apparition de fines gouttelettes et de cristaux. La température après détente est plus basse lorsque la pression initiale est plus importante, c’est-à-dire lorsque la température initiale est plus élevée. Comme la température peut chuter à -90°C, le CO2 peut lui-même geler.

Du nouveau !

C’est en étudiant attentivement ce phénomène que les physiciens français Gérard Liger-Belair, Daniel Cordier et Robert Georges du CNRS viennent de découvrir une chose surprenante qui a faut l’objet d’une publication (Liger-Belair et al. Sci. Adv. 2019; 5 : eaav5528 20 Septembre 2019) : l’expansion du CO2 s’effectue de manière supersonique (c'est-à-dire plus rapide que 340 m/s) avec formation de ce qui s’appelle un « disque de Mach »… qu’il ne faut confondre avec un « cône de Mach », lequel apparaît lorsqu’un objet - comme un avion par exemple ou une balle - avance à vitesse supersonique. Les disques de Mach sont des ondes de choc bien visibles dans les jets des réacteurs d’avions supersoniques. Le jet de plusieurs mètres de long comporte des stries régulièrement espacées : ce sont les « disques de Mach » appelés aussi en anglais « shock diamonds ». À l’aide d’une caméra ultrarapide, les chercheurs ont pu photographier l’apparition d’un disque de Mach et son évolution au cours du temps. Comme quoi, il y a encore de la physique à découvrir dans une simple bouteille de champagne.

 

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Un gel reconstructeur
Une équipe de chercheurs américains a mis au point un gel qui pourrait permettre de remplacer certains tissus mous.

© Wiki Commons

 

Un espoir pour réparer les tissus

Une équipe de chercheurs de l’Université Johns Hopkins School of Medecine à Baltimore (États-Unis) a développé un gel qui mime la micro-architecture et les propriétés mécaniques des tissus mous. Ce gel permettrait de guérir plus vite et sans déformation ni cicatrice. Testé sur des rats et des lapins, il a montré une nette amélioration de la cicatrisation. Il pourra être utilisé après des excisions de tumeur, des malformations congénitales, des brûlures, des blessures importantes ou même contre le vieillissement. Injectable par aiguille, il serait beaucoup moins traumatisant pour les patients que les transplantations de peau utilisées depuis une quinzaine d'années. Elles nécessitent en effet le prélèvement de tissus sur une autre partie du corps, laissant de nombreuses cicatrices. Dans certains cas, des implants synthétiques de peau sont utilisés mais les cellules immunitaires réagissent mal et rejettent parfois l’implant, provoquant, là aussi, des cicatrices.« Dans les greffes de peau il n’y a que l’épiderme qui est recréé ce qui ne permet pas de souplesse. Il faut un derme artificiel pour reconstruire une peau totale» explique Michael Atlan, chef de service à l'APHP au service de chirurgie plastique reconstructrice et esthétique, microchirurgie, régénération tissulaire et chercheur au laboratoire LVTS de BICHAT INSERM et membre du centre de recherche De St Antoine du Pr Bruno Feve, spécialisé dans l'étude du tissu graisseux . « On peut aussi utiliser des tissus animaux décellularisés pour construire une architecture 3D. Cette technique est souvent utilisée en reconstruction mammaire. »

Une matrice en nanofibres

Ce gel est composé de nanofibres en polymère biodégradable (nanofibres de polycaprolactone). Ce type de polymère était déjà connu et utilisé pour réaliser les points de suture. Les nanofibres sont similaires à la matrice extracellulaire. La matrice extracellulaire est une structure située à l'extérieur des cellules. Elle fournit un support structurel pour les cellules et les tissus et sert de ciment intercellulaire. « La polycaprolactone est très utile car elle se résorbe. Elle maintient l’architecture le temps que se fixent les cellules » ajoute Michael Atlan. Cependant, elles ne sont pas injectables et ne produisent pas le volume ni les propriétés mécaniques nécessaires à la reconstruction tissulaire. C’est pourquoi les nanofibres de polymères sont imbibées d’acide hyaluronique. Selon le chirurgien, « l’acide hyaluronique est un composant naturel de la matrice extracellulaire. Il facilite la reconstruction des tissus et leur hydratation ". Il était déjà utilisé par les chirurgiens pour aider la cicatrisation des petites blessures. Il se lie aux macrophages (cellules immunitaires) ce qui permet de lutter contre l’inflammation. Il induit aussi une angiogenèse (création de nouveaux vaisseaux sanguins). Après l’injection, le gel crée des liaisons entre l’acide hyaluronique et les cellules. Cela entraîne la création d’une matrice élastique, squelette permettant aux cellules du corps humain de se greffer dessus. « Le gel sera injecté en complément de cellules souches qui viendront coloniser la matrice» explique Michael Atlan. Cette structure poreuse laisse passer les cellules utiles à la cicatrisation et favorise l’angiogenèse. « L’alliance d’une matrice 3D avec des cellules souches permet de recréer un derme. Les cellules souches sont issues de la graisse, elles se différencient pour s’adapter au receveur » conclut Michael Atlan.

 

En savoir plus :

Camille Paschal
Twitter Facebook Google Plus Linkedin email
Entrées associées