S'inscrire identifiants oubliés ?

COVID-19, le B-A BA - l'émergence

By Felipe Esquivel Reed - Own work, CC BY-SA 4.0, COVID-19 virion

Une nouvelle épidémie de coronavirus

En décembre 2019, dans la ville chinoise de Wuhan (province de Hubei), apparaissent les premiers cas d'une pneumonie d’allure virale et d’origine alors inconnue. ...

L'histoire urbaine ... dans les égouts

Une carotte servant d'archive

Le projet Golden Spike, réalisé entre 2017 et 2018 à l’ISTO (Institut de la Terre d’Orléans) avec le soutien d’Orléans Métropole et la participation de chercheurs de l’Institut Pierre Simon Laplace (LSCE-IPSL), vise à ...

Physique de l’espresso

Une recette ancestrale

Dans les grandes lignes, depuis son invention en 1884, la préparation d’un espresso consiste à forcer de l’eau chaude à passer assez rapidement à travers du café moulu très fin. Plus précisément, la température de l’eau ...

Des panneaux solaires bifaces

Les panneaux solaires : du silicium « dopé »

Dans un panneau solaire, l’énergie lumineuse est convertie en courant électrique, grâce à l’effet photoélectrique où un photon arrache un électron à un atome. Pour cela, il faut ...

Les électrons peuvent s’écouler comme l’eau

Lorsque l’eau s’écoule dans un tuyau, ce sont les interactions entre ses molécules qui la freinent. A l’inverse, lorsque des électrons s’écoulent dans un fil conducteur, c’est avant tout le fil lui-même qui les freine. Une équipe de chercheurs britanniques et israéliens, ...

Les cristaux temporels

Réseaux cristallins associés à l'eau. by Psi?edelisto, based on version by Dbuckingham42 - Own work, CC BY-SA 4.0,

Cristal et brisure de symétrie 

Un cristal est un état de la matière dans lequel les atomes sont ordonnés selon une périodicité spatiale ...

Du ribose dans les météorites

Le ribose, sucre vital

L’ADN - ou acide désoxyribonucléique - est formé en particulier d’un sucre, le désoxyribose, lui-même un dérivé du ribose (C5H10O5). Plus précisément, dans le désoxyribose (C5H10O4) un groupement hydroxyle (-OH) du ribose ...

Un nouveau comportement des électrons

Cooper pairs - Tem5psu CC BY-SA
Isolants, conducteurs et semi-conducteurs

Le comportement d’un solide cristallin relativement au courant électrique, peut être celui d’un isolant, d’un semi-conducteur, d’un métal ou d’un supraconducteur. Dans les isolants, les charges électriques ne peuvent être mises en mouvement, contrairement à ce qui se passe avec les métaux, qui sont conducteurs. Les semi-conducteurs ont un comportement intermédiaire. Afin qu’ils conduisent, il leur faut un petit apport d’énergie de l’extérieur, par exemple thermique. Dans le cas contraire, ils sont isolants. De ce fait, leur résistance décroît avec une élévation de température, un comportement opposé à celui des métaux, dont la résistance décroît à mesure qu’ils sont refroidis. La résistance électrique qu’offre un métal au passage du courant résulte d’une part des défauts cristallins, d’autre part de l’agitation thermique.

La supraconduction

Malgré tout, certains métaux et alliages métalliques, généralement mauvais conducteurs à température ambiante (plomb, étain, mercure…), offrent une résistance nulle au passage du courant à très basse température, même s’ils ne sont pas exempts de défauts. Lors de leur refroidissement, leur résistance diminue normalement, mais tombe brutalement à zéro en dessous d’une température critique. Ce phénomène de conduction parfaite, découvert en 1911, a été nommé supraconduction. A la température critique, un changement d’état électronique prend place et permet au courant de ne rencontrer aucune résistance, malgré les défauts cristallins. Depuis les années 1950, les physiciens expliquent ce changement d’état par un appariement des électrons : ils se regroupent par deux, formant de nouvelles particules appelées « paires de Cooper », lesquelles circulent sans perte d’énergie, d’où la conduction parfaite.  Ce changement de comportement radical est dû au fait qu’en raison de leur spin demi-entier (+1/2 ou -1/2), les électrons se comportent « comme des billes », ils se percutent et se gênent, tandis que les paires de Cooper possèdent un spin entier (0 ou 1) et se comportent  « comme la lumière »,  elles se traversent sans se gêner.

Facétieuses paires de Cooper

Reste que la physique des supraconducteurs - surtout non métalliques - est loin d’être bien comprise, de même que celle des paires de Cooper. Ainsi, en 2007, on découvre que dans certains matériaux, les paires de Cooper peuvent être piégées, si bien que ces matériaux sont des isolants. La découverte extraordinaire récente vient de révéler que juste au-dessus de leur température critique, certains matériaux offrent une résistance non nulle au passage du courant constitué pourtant… de paires de Cooper !
A présent, on connaît donc les supraconducteurs, mais aussi des isolants et des conducteurs à paires de Cooper. Gageons que la découverte de semi-conducteurs à paires de Cooper arrivera un jour.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


En route vers le Soleil
Lancée le 12 août 2018 par la NASA, la sonde Parker Solar est l'engin spatial qui s'est le plus approché du Soleil.

Credits: NASA/Johns Hopkins APL/Steve Gribben 

Un voyage d'enfer

Baptisée en hommage à l'astrophysicien américain Eugene Parker, qui a posé les bases de la théorie du vent solaire, la mission Parker Solar devrait contribuer à percer les mystères qui entourent le Soleil et son atmosphère. La sonde va survoler Vénus, et se servir de son attraction gravitationnelle pour s'approcher graduellement du Soleil, et ce durant les sept prochaines années. D'ores et déjà, la sonde a battu e nnovembre 2018 le record de l'engin spatial le plus proche du Soleil. En effectuant 24 passes de plus en plus rapprochées de notre étoile, Parker Solar va traverser l'atmosphère solaire et se retrouver dans la couronne solaire. Pour supporter les radiations intenses et une température atteignant les 1400°C lors de sa traversée de l'atmosphère solaire, la sonde est équipée d'un bouclier en carbone composite d'une épaisseur de 11,43 cm.

La mission

La mission doit apporter des réponses à trois questions majeures, la première étant de déterminer les flux d'énergie qui confèrent à la couronne solaire une température trois cents fois supérieure à celle de la surface visible, la photosphère. La deuxième interrogation porte sur la détermination de la structure et de la dynamique des champs magnétiques à l'origine des particules du vent solaire. La dernière, enfin, consiste à expliquer les vitesses supersoniques des particules les plus énergétiques qui s'échappent de la couronne.
Les instruments à bord de la sonde Parker Solar sont conçus pour observer ces phénomènes, de manière inédite.

FIELDS est l'instrument dédié à la mesure des turbulences de l'héliosphère interne, qui devrait permettre de comprendre le réalignement des lignes des champs magnétiques. Il est composé d'antennes qui vont mesurer les flux de particules constamment émis par le soleil, tout en construisant des images tri-dimensionnelles du champ électrique.

WISPR, le seul instrument d'imagerie à bord de la sonde, permettra d'observer la structure étendue de la couronne et des vents solaires avant que la sonde ne passe au travers. Il est équipé de deux caméras pourvues de détecteurs et de lentilles résistants aux rayons et à la poussière cosmiques.

SWEAP réunit deux instruments complémentaires, chargés de compter les particules les plus abondantes dans les vents solaires (électrons, protons, ions hélium) et de mesurer leurs propriétés telles la vitesse, la densité et la température.

ISOIS combine également deux instruments pour mesurer les particules sur un large spectre énergétique. L'objectif est de comprendre le "cycle de vie" de ces particules : d'où sont-elles parties ? Comment ont-elles été accélérées et comment se déplacent-elles depuis le Soleil jusqu'à l'espace interplanétaire ?

  • EPI-Lo mesure le spectre des électrons et des ions et de l'identification du carbone, de l'oxygène, du magnésium, des isotopes d'hélium, etc. Ces mesures aideront à déterminer quels mécanismes sont responsables de l'accélération des particules.

  • Quant à EPI-Hi, il sert à détecter des particules de plus hautes énergies avec 100.000 particules/seconde au plus près du Soleil.

"La sonde Parker Solar nous fournit les mesures essentielles à la compréhension des phénomènes solaires qui nous intriguent depuis des décennies", explique Nour Raouafi, chercheur au Laboratoir de Physique Appliquée de l'Université Johns Hopkins, et scientifique du projet Parker Solar Probe. "Nous ne savons pas à quoi nous attendre si près du Soleil jusqu'à ce que l'on obtienne les données, et nous verrons probablement de nouveaux phénomènes. Parker est une mission d'exploration, la possibilité de faire de nouvelles découvertes est immense".

La France contribue également à cette mission grâce au SCM (Search Coil Magnetometer), un magnétomètre, développé par le LPC2E (Laboratoire de Physique et Chimie de l'Environnement et de l'Espace), qui est chargé de mesurer les fluctuations du champ magnétique autour du satellite.
Cependant, la participation française ne s'arrête pas là. François Gonzalez, chef de projet de la mission Parker Solar Probe au CNES revient sur la contribution des chercheurs français: "Lorsque l'on prépare une mission comme celle-ci, on se pose beaucoup de questions sur ce qu'on veut aller mesurer et comment on va le faire. Il y a d'autres laboratoires du CNRS comme le LESIA à Paris ou l'IRAP à Toulouse, qui ont contribué à la définition scientifique. Les chercheurs ont participé à des groupes pour définir les objectifs scientifiques de la mission et ils sont aujourd'hui à pied d’œuvre puisque le satellite commence à envoyer les premières mesures."

Il existe plusieurs satellites consacrés à la recherche solaire et héliosphérique. Ces observatoires spatiaux n'ont eu de cesse, pendant des années, voire des décennies, de scruter le Soleil. Ils restent pourtant limités par leur éloignement. La mission Parker Solar Probe permet d'effectuer les observations à la distance la plus réduite jamais atteinte. La sonde vient d'ailleurs de fournir sa première photo de la couronne solaire. Du fait de la brièveté des passages au plus près du Soleil et de la configuration de cette trajectoire en boucles de plus en plus rapprochées, les messages n'arriveront qu'au compte-gouttes !

Publié le 25/01/2019

En savoir plus :

Yassa HARBANE
Twitter Facebook Google Plus Linkedin email
Entrées associées