S'inscrire identifiants oubliés ?

Transport de l’énergie électrique

La quasi-totalité de l’énergie électrique dans le monde est produite puis transportée vers les villes et les centres industriels sous forme de courant

Atmosphère de la Terre primitive

Auteur C Eeckhout.

L’atmosphère primitive et son évolution

Au Précambrien, l'atmosphère primitive de notre planète était dépourvue d’oxygène et riche en dioxyde de carbone (CO2) et en méthane, ainsi ...

En route vers le Soleil

Credits: NASA/Johns Hopkins APL/Steve Gribben 

Un voyage d'enfer

Baptisée en hommage à l'astrophysicien américain Eugene Parker, qui a posé les bases de la théorie du vent solaire, la mission Parker Solar devrait contribuer à percer les mystères ...

Révolution hydrogène

L'hydrogène carburant :

L'hydrogène (ou dihydrogène - H2) est considéré comme étant un carburant propre puisque sa combustion n'émet ni CO2 ni particules fines, mais uniquement ...

Le verre se met au vert

Production du verre - Domaine public

Le verre, un matériau traditionnel innovant

La production du verre est une activité millénaire, d’abord artisanale, puis industrielle. S’il existe différents types de verres qui se distinguent par leurs compositions, leurs ...

Des nano-balances pour peser des virus

Mesurer le nano monde

Un nano-objet a par définition des dimensions de l'ordre du nanomètre soit (10-9 m). À titre de comparaison, le diamètre d'un cheveu mesure entre 50 et 100 micromètres (10-6 m).

Les nano-objets comprennent entre autres les ...

Nouveau succès pour la mission New Horizons

Pluton et Charon
Credit: NASA/JHUAPL/SwRI

Une première historique

Lancée le 19 janvier 2006, New Horizons est une mission spatiale dédiée à l'observation de Pluton et de la ceinture de Kuiper, cette région du système solaire en forme d'anneau ...

Des crustacés pour produire du biocarburant?

Crustacés xylophages

Les Limnories lignorum ou Limnories du bois sont de petits invertébrés xylophages capables d'ingérer le bois immergé dans l'eau de mer. Ils jouent ainsi un rôle important dans l'écosystème littoral en participant au recyclage de la cellulose et de la lignine, le composant du bois qui lui donne sa rigidité. Ils causent également des dégâts en s'attaquant aux coques des bateaux, aux pontons et autres constructions en bois.

Jusqu'à présent, la faculté des limnories à décomposer la lignine restait un mystère.
En étudiant l'intestin des limnories, une équipe de scientifiques a découvert que l'hémocyanine, protéine responsable de la couleur bleue du sang de ces invertébrés, joue un rôle primordial dans leur capacité à digérer les sucres du bois.

L'hémocyanine est une protéine connue pour son rôle de transporteur de l'oxygène chez certains invertébrés, de la même manière que l'hémoglobine chez les vertébrés.
Alors que l'hémoglobine lie l'oxygène grâce aux atomes de fer de sa structure, qui donnent au sang sa couleur rouge, l'hémocyanine fait de même avec des atomes de cuivre, à l'origine d'une couleur bleue. Les limnories exploitent les propriétés oxydantes de l'hémocyanine pour attaquer les liaisons au sein de la lignine.
 

Une nouvelle piste pour les énergies renouvelables ?

Le Professeur Simon McQueen-Mason, du département de biologie de l'université de York, qui conduit ces recherches, explique que : « Les limnories sont les seuls animaux pourvus d'un système digestif stérile connus à ce jour. Cela rend leur méthode de digestion du bois plus facile à étudier que celle d'autres créatures xylophages comme les termites, chez lesquelles la digestion est assurée par des milliers de microorganismes intestinaux ». 
Il ajoute : « Nous avons découvert que les limnories déchiquètent le bois en le mâchant en de minuscules morceaux avant de se servir de l'hémocyanine pour s'attaquer à la structure de la lignine. »

Les recherches menées par des équipes des universités de York, Portsmouth, Cambridge et Sao Paulo ont révélé que traiter le bois avec l'hémocyanine permet de doubler la quantité de sucre libérée, sans avoir recours à des traitements thermochimiques coûteux et énergivores.

La troisième génération de biocarburants, dont la recherche se focalise pour l'instant sur les microalgues, pourrait bien accueillir ce candidat innatendu. Cette découverte pourrait permettre, à terme, de réduire l'énergie nécessaire pour transformer le bois en biocarburant.

Publié le 14/12/2018

En savoir plus :

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


BepiColombo
La première mission spatiale européenne pour Mercure.

(C) ESA. BepiColombo
La mission spatiale BepiColombo, lancée le 20 octobre 2018, depuis le Centre Spatial de Kourou en Guyane, se dirige vers Mercure.

Deux orbiteurs pour étudier Mercure

Après les sondes américaines Mariner10 en 1973 et Messenger en 2004, BepiColombo est la troisième mission ayant pour objectif d'explorer la surface et l’environnement de la planète Mercure. Pourquoi Mercure ? Parce que cette planète du système solaire présente un grand intérêt scientifique. D'une part, l'étude de cette planète rocheuse située à environ 58 millions de kilomètres du Soleil (contre 108 millions km pourVénus et 150 millions km pour la Terre) devrait permettre de mieux comprendre la formation du système solaire. D'autre part, la quasi absence d'atmosphère reste une énigme, même si elle reçoit dix fois plus de radiations solaires que la Terre. L'origine du champ magnétique intrinsèque de Mercure reste également inexpliqué.

Lancée depuis le Centre Spatial de Kourou en Guyane, BepiColombo est une mission très complexe, fruit d'une collaboration entre les agences spatiales européenne ESA (European Space Agency) et japonaise JAXA (Japan Aerospace Exploration Agency). BepiColombo comprend deux engins spatiaux qui graviteront sur deux orbites distinctes de Mercure. Le premier orbiteur, MMO (Mercury Magnetospheric Orbiter), sous la responsabilité de JAXA, va permettre d'étudier la magnétosphère et le champ magnétique de la planète, mais également d'analyser des poussières interplanétaires. Quant à la seconde sonde, MPO (Mercury Planetary Orbiter), développée par l'ESA et rebaptisée Bepi, elle est dédiée à l'étude de la surface, la composition géologique et l'"exosphère" de Mercure, cette atmosphère très diffuse.

L'hostilité de l'environnement de Mercure, soumis à des radiations et à des écarts de température extrêmes ( 430° C le jour et -180°C la nuit), rend très délicat l'envoi de sondes spatiales et d'instruments de mesure et représente un défi technologique en terme de matériau en particulier. Notons également que la durée prévue du trajet vers Mercure est de 7 ans !

Un spectrométre ultra-sensible

Lorsqu'un électron d'une espèce chimique donnée (atome, ion, molécule) absorbe un photon, il passe d'un état au repos à un état excité. L'excitation ne durant qu'un très court instant (entre 1 et 100 nanosecondes), l'électron retourne à son état d'énergie fondamentale en émettant un photon d'une longueur d'onde propre à l'espèce. Conçu par le LATMOS (Laboratoire Atmosphères, Milieux et Observations Spatiales), l'instrument PHEBUS (Probing of Hermean Exosphere By Ultraviolet Spectroscopy) est un double spectromètre optique qui a la particularité de pouvoir détecter des longueurs d'ondes très courtes, allant de l'extrême ultraviolet (EUV : 55-155 nm) à l’ultraviolet lointain (FUV : 145-315 nm). Pour détecter les très faibles émissions de l'exosphère de Mercure, une sensibilité très élevée ainsi qu'une forte atténuation de la lumière parasite sont requises. C'est pourquoi l'instrument est doté d'un système collecteur de lumière, lui-même composé d'un déflecteur de lumière parasite (baffle) et d'un miroir parabolique faisant office de télescope d’entrée. Les photons observés sont ensuite séparés en fonction de leur longueur d'onde.

Avec ce dispositif, PHEBUS devrait être en mesure de détecter des métaux (silicium, magnésium, fer), des gaz rares (argon, néon) et des traces d’hydrogène et d’hélium.
Publié le 20/10/2018

En savoir plus :

Yassa HARBANE
Twitter Facebook Google Plus Linkedin email
Entrées associées