S'inscrire identifiants oubliés ?

COVID-19, le B-A BA - l'émergence

By Felipe Esquivel Reed - Own work, CC BY-SA 4.0, COVID-19 virion

Une nouvelle épidémie de coronavirus

En décembre 2019, dans la ville chinoise de Wuhan (province de Hubei), apparaissent les premiers cas d'une pneumonie d’allure virale et d’origine alors inconnue. ...

L'histoire urbaine ... dans les égouts

Une carotte servant d'archive

Le projet Golden Spike, réalisé entre 2017 et 2018 à l’ISTO (Institut de la Terre d’Orléans) avec le soutien d’Orléans Métropole et la participation de chercheurs de l’Institut Pierre Simon Laplace (LSCE-IPSL), vise à ...

Physique de l’espresso

Une recette ancestrale

Dans les grandes lignes, depuis son invention en 1884, la préparation d’un espresso consiste à forcer de l’eau chaude à passer assez rapidement à travers du café moulu très fin. Plus précisément, la température de l’eau ...

Des panneaux solaires bifaces

Les panneaux solaires : du silicium « dopé »

Dans un panneau solaire, l’énergie lumineuse est convertie en courant électrique, grâce à l’effet photoélectrique où un photon arrache un électron à un atome. Pour cela, il faut ...

Les électrons peuvent s’écouler comme l’eau

Lorsque l’eau s’écoule dans un tuyau, ce sont les interactions entre ses molécules qui la freinent. A l’inverse, lorsque des électrons s’écoulent dans un fil conducteur, c’est avant tout le fil lui-même qui les freine. Une équipe de chercheurs britanniques et israéliens, ...

Les cristaux temporels

Réseaux cristallins associés à l'eau. by Psi?edelisto, based on version by Dbuckingham42 - Own work, CC BY-SA 4.0,

Cristal et brisure de symétrie 

Un cristal est un état de la matière dans lequel les atomes sont ordonnés selon une périodicité spatiale ...

Du ribose dans les météorites

Le ribose, sucre vital

L’ADN - ou acide désoxyribonucléique - est formé en particulier d’un sucre, le désoxyribose, lui-même un dérivé du ribose (C5H10O5). Plus précisément, dans le désoxyribose (C5H10O4) un groupement hydroxyle (-OH) du ribose ...

Un nouveau comportement des électrons

Cooper pairs - Tem5psu CC BY-SA
Isolants, conducteurs et semi-conducteurs

Le comportement d’un solide cristallin relativement au courant électrique, peut être celui d’un isolant, d’un semi-conducteur, d’un métal ou d’un supraconducteur. Dans les isolants, les charges électriques ne peuvent être mises en mouvement, contrairement à ce qui se passe avec les métaux, qui sont conducteurs. Les semi-conducteurs ont un comportement intermédiaire. Afin qu’ils conduisent, il leur faut un petit apport d’énergie de l’extérieur, par exemple thermique. Dans le cas contraire, ils sont isolants. De ce fait, leur résistance décroît avec une élévation de température, un comportement opposé à celui des métaux, dont la résistance décroît à mesure qu’ils sont refroidis. La résistance électrique qu’offre un métal au passage du courant résulte d’une part des défauts cristallins, d’autre part de l’agitation thermique.

La supraconduction

Malgré tout, certains métaux et alliages métalliques, généralement mauvais conducteurs à température ambiante (plomb, étain, mercure…), offrent une résistance nulle au passage du courant à très basse température, même s’ils ne sont pas exempts de défauts. Lors de leur refroidissement, leur résistance diminue normalement, mais tombe brutalement à zéro en dessous d’une température critique. Ce phénomène de conduction parfaite, découvert en 1911, a été nommé supraconduction. A la température critique, un changement d’état électronique prend place et permet au courant de ne rencontrer aucune résistance, malgré les défauts cristallins. Depuis les années 1950, les physiciens expliquent ce changement d’état par un appariement des électrons : ils se regroupent par deux, formant de nouvelles particules appelées « paires de Cooper », lesquelles circulent sans perte d’énergie, d’où la conduction parfaite.  Ce changement de comportement radical est dû au fait qu’en raison de leur spin demi-entier (+1/2 ou -1/2), les électrons se comportent « comme des billes », ils se percutent et se gênent, tandis que les paires de Cooper possèdent un spin entier (0 ou 1) et se comportent  « comme la lumière »,  elles se traversent sans se gêner.

Facétieuses paires de Cooper

Reste que la physique des supraconducteurs - surtout non métalliques - est loin d’être bien comprise, de même que celle des paires de Cooper. Ainsi, en 2007, on découvre que dans certains matériaux, les paires de Cooper peuvent être piégées, si bien que ces matériaux sont des isolants. La découverte extraordinaire récente vient de révéler que juste au-dessus de leur température critique, certains matériaux offrent une résistance non nulle au passage du courant constitué pourtant… de paires de Cooper !
A présent, on connaît donc les supraconducteurs, mais aussi des isolants et des conducteurs à paires de Cooper. Gageons que la découverte de semi-conducteurs à paires de Cooper arrivera un jour.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Lasers à l'honneur pour le Prix Nobel 2018
Le Prix Nobel de physique 2018 a récompensé Arthur Ashkin, Gérard Mourou et Donna Strickland pour leurs travaux en physique des lasers.

Arthur Ashkin a été primé pour l'invention des «pinces optiques», dont le principe repose sur l'utilisation des forces liées à la réfraction d’un faisceau laser en milieu transparent. Cette force va alors permettre de maintenir et de déplacer des objets microscopiques, voire nanoscopiques tels des atomes, des virus, des bactéries et autres cellules vivantes.
L'avantage de cette technique est qu'elle est non-destructive : les faisceaux lasers peuvent atteindre les éléments internes d'une cellule sans en détruire la membrane. C'est pourquoi elle est très utilisée en biologie où des chercheurs ont, par exemple, réussi à sonder et mesurer les forces entre des particules et l'élasticité de l'ADN ou encore à désobstruer des vaisseaux sanguins.

 

La seconde moitié du Prix a été attribuée à Gérard Mourou, professeur et membre du Haut-collège de l’École polytechnique et Donna Strickland de l'Université de Waterloo, au Canada, pour avoir conjointement élaboré une méthode de génération d’impulsions optiques ultra-courtes de haute intensité.

Dans les années 1980, l'amplification des faisceaux lasers semblait marquer le pas.
La technique mise au point par Mourou et Strickland se nomme «amplification par impulsions» (chirped pulse amplification, CPA). Elle consiste à étirer une brève impulsion laser dans le temps, à l'amplifier puis à la comprimer à nouveau. Le fait d'allonger l'impulsion réduit sa puissance de crête, ce qui permet de l'amplifier sans endommager le dispositif. L'impulsion est ensuite comprimée dans un temps plus court, ce qui augmente considérablement son intensité. Ces impulsions ultra-courtes ont une durée de quelques dizaines de femto-secondes (1fs = 10-15 s), et disposent d'une très haute puissance de l'ordre du pétawatt (1PW=1015 W).

Cette découverte a contribué à l’avancement de la science dans plusieurs domaines de la physique en permettant notamment de fabriquer des lasers de plus en plus intenses pour sonder la matière. Grâce à la précision de coupe obtenue grâce à des impulsions brèves et intenses, la technique CPA a permis des avancées dans le domaine de la chirurgie réfractive de l’œil et du traitement de la cataracte. Elle a également conduit à l'observation de phénomènes ultrarapides tels que les phases transitoires de réactions chimiques.

Publié le 04/10/2018

En savoir plus :

Sur les pinces optiques :
https://www.photoniques.com/articles/photon/pdf/2013/04/photon201366p45.pdf

Sur la CPA :
http://www.cnrs.fr/inp/spip.php?article382
http://www.cea.fr/multimedia/Documents/infographies/impulsions-lasers-femtoseconde-attoseconde_defis-du-cea.pdf

Yassa HARBANE
Twitter Facebook Google Plus Linkedin email
Entrées associées