S'inscrire identifiants oubliés ?

Clichés d'astéroïdes

(C) ESO/Vernazza et al. Dans le sens des aiguilles d’une montre en partant du haut à gauche, les astéroïdes Amphitrite, Bamberga, Pallas et Julie.

Les observations

L'instrument SPHERE (Spectro-Polarimètre à Haut contraste dédié ...

Des signaux électriques chez les bactéries

(C) By Lamiot - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20798283

Depuis la fin des années 1970, les microbiologistes savent que, chez de nombreux microorganismes, la vie communautaire passe par la production d’une matrice adhésive extracellulaire constituée ...

Oumuamua, un astéroïde venu d'ailleurs

L'observation

Un objet en forme de cigare, se déplaçant à très vive allure a été détecté en octobre 2017 au télescope Pan-STARRS de Haleakala (Hawaï). Sa trajectoire s'est vite avérée aussi inhabituelle que sa forme allongée (400 ...

Bioacoustique et applications

Cat CC BY 2.0 via Wikimedia Commons

Le cri d'alarme des ailes

En 1871, Charles Darwin signalait l’existence de signaux non vocaux chez certains oiseaux, produits par leurs plumes, lors de leurs parades amoureuses. Des chercheurs de l’université nationale d’Australie ...

Du plastique numérique

Des chercheurs ont réussi à inscrire et lire plusieurs octets d'information stockés sur des polymères synthétiques. C'est-à-dire à une échelle 100 fois plus petite que celle des disques durs actuels.

La piste des plastiques numériques

Cela ...

Marie Curie (1867-1934)

Une scientifique d'exception

Née en Pologne à Varsovie en 1867, Marie Curie a mené toute sa carrière scientifique en France. Après de brillantes études en physique et en mathématiques, à la Sorbonne, éprise de "science pure", elle se lance dans ...

La foudre et les neutrons

(C) Thomas Bresson - Eclairs, CC BY 2.0

On sait depuis près de soixante ans que sous l’impact des « rayons cosmiques » - essentiellement des protons de haute énergie dont l’origine reste inconnue - les noyaux des atomes percutés à haute altitude éclatent en ...

Le délai de Newton-Wigner

(C) Wikimedia

Une avancée récente devrait permettre une meilleure maîtrise de la transmission de l’information par fibre optique

Un peu de réflexion
Dans une fibre optique, la lumière est guidée et transmise d’un bout à l’autre de la fibre par de multiples réflexions. Examinons le phénomène de plus près. De manière générale, lorsqu’un faisceau lumineux aborde l’interface séparant deux milieux transparents, il se divise en deux. L'un quitte le premier milieu et passe dans le second avec changement de direction, c’est la réfraction. L’autre est renvoyé dans le premier milieu : il « rebondit » à l’interface avec un angle égal à l’angle d’incidence, c’est la réflexion. Si deux conditions sont réunies, la part réfractée peut être nulle, toute la lumière étant réfléchie, l’interface jouant le rôle d’un miroir. On parle alors de « réflexion totale ». C’est grâce à elle que la lumière voyage dans une fibre optique. Pour qu’il y ait réflexion totale, il faut que la lumière se propage moins vite dans le premier milieu (indice de réfraction plus élevé) que dans le second (indice moins élevé), et il faut aussi que le faisceau aborde l’interface sous un angle (par rapport à la verticale) supérieur à un angle critique qui dépend du rapport des deux vitesses, c’est l’angle de réflexion totale. On peut facilement observer cet effet miroir, en regardant de près l’interface eau-air, en étant dans l’eau, dans une piscine par exemple. Il faut être près de la surface de manière à ce que l’angle sous lequel le regard est porté soit supérieur à 49 degrés. Cette « optique géométrique » était connue dès le XVIIe siècle, notamment par Snell et Descartes.

L'onde évanescente
Cependant, Newton remarque que lors de la réflexion totale, la lumière semble quitter le premier milieu sur une très courte distance avant de revenir en arrière. Tout se passe comme si l’onde lumineuse se réfléchissait non à l’interface, mais un peu au-delà, dans le second milieu d’indice plus faible. Cette onde qui quitte le premier milieu avant de rebrousser son chemin est appelée « onde évanescente ». A cause de ce phénomène dont l’analogue quantique est appelé « effet tunnel », le faisceau réfléchi est très légèrement décalé par rapport à celui que prévoit l’optique géométrique, et il est également un petit peu en retard par rapport à lui. Le décalage spatial a été mesuré en 1947 par Goos et Hänchen. Quant au décalage temporel, étudié théoriquement par Wigner en 1955 et appelé « délai de Newton-Wigner », de l’ordre de 10-14 s, il vient d’être mesuré de manière indiscutable par des chercheurs rennais.
Le délai de Newton-Wigner
On comprend que ces décalages spatiaux et temporels affectent la transmission de l’information dans les fibres. Au-delà de son intérêt théorique, la meilleure compréhension de la réflexion totale devrait améliorer la technologie des fibres optiques.  
Publié le 17/10/1017

En savoir plus

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Des signaux électriques chez les bactéries
Découverte d'un mode de communication électrique naturel.

(C) By Lamiot - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20798283

Depuis la fin des années 1970, les microbiologistes savent que, chez de nombreux microorganismes, la vie communautaire passe par la production d’une matrice adhésive extracellulaire constituée de polymères qu’ils excrètent. Ce tapis appelé biofilm sur lequel ils se développent et qui les lie, joue notamment le rôle d’un support permettant la communication entre les cellules. Si, par exemple, la nourriture vient à manquer à des bactéries situées au centre d’une colonie, celles à la périphérie arrêtent la production du biofilm, si bien que la colonie cesse de croître. Jusqu’à récemment, on pensait que c’est grâce des molécules excrétées au centre et migrant par diffusion vers l’extérieur que les cellules périphériques sont averties. Mais grâce à des expériences menées à l’Université de San Diego en Californie, il apparaît qu’il s’agit en fait de signaux électriques, lesquels se révèlent beaucoup plus efficaces pour la communication que les messages chimiques. Il a été démontré que le manque de nourriture provoque l'expulsion d’ions potassium (K+) hors des bactéries. Ces ions déclenchent à leur tour l’émission de K+ par d’autres bactéries et ainsi de suite. Ainsi, c’est une onde de « libération de K+ » qui se propage de proche en proche, à quelques millimètres par heure, et parvient aux cellules à la périphérie de la colonie, lesquelles cessent alors la production de biofilm. Les chercheurs ont ensuite montré que le nuage d’ions K+ qui poursuit son chemin hors du biofilm permet de recruter des bactéries libres qui viennent alors se joindre à la colonie. Chose extraordinaire, cela attire non seulement les bactéries de la même espèce mais aussi d’autres bactéries ! Par ailleurs, ces mêmes ions K+ permettent à deux biofilms de communiquer. Ainsi, sous certaines conditions, les colonies se synchronisent : pendant que l’une se nourrit, l’autre marque une pause et inversement, ce qui leur permet de gérer la nourriture de façon optimale. Cette grande découverte, à savoir la communication électrique entre les bactéries, soulève une question intéressante : sachant que les signaux électriques le long des neurones se propagent grâce à la sortie d’ions K+, cette communication électrique bactérienne serait-elle l’ancêtre du neurone ?

Publié le 28/11/2017

En savoir plus

https://www.scientificamerican.com/article/bacteria-use-brainlike-bursts-of-electricity-to-communicate/

Kamil Fadel
Twitter Facebook Google Plus Linkedin email