S'inscrire identifiants oubliés ?

Interférences et biomolécules

CC BY-SA 4.0 Alexandre Gondran
Les expériences d’interférences mettant en jeu des molécules de plus en plus grosses et lourdes révèlent que les lois de la mécanique quantique sont applicables bien au-delà du monde de « l’infiniment petit » ...

Anomalie de dilatation thermique

By Simon Mer - Own work, CC BY-SA 4.0
Généralement, les matériaux se dilatent lorsqu’ils sont chauffés. La raison en est qu’une élévation de température correspond à une augmentation de l’agitation des atomes, or cette agitation n’est pas symétrique. ...

Nucléosythèse et étoiles à neutrons

(C) NASA - Nébuleuse du Crabe, marquée par la présence d'une étoile à neutron
Mis à part quelques éléments légers comme l’hydrogène, l’hélium, le lithium… produits peu après le big bang, tous les noyaux atomiques naturels ...

Des réfrigérateurs à torsion

Impératifs environnementaux

Près de 20% de l’énergie électrique produite dans le monde est consommée par les climatiseurs, réfrigérateurs et congélateurs. De plus, ces machines frigorifiques utilisent des fluides frigorigènes dont la plupart sont des gaz ...

Les batteries au lithium pour un Nobel

De la petite électronique à la voiture électrique, la pile lithium-ion - non rechargeable - et surtout l'accumulateur - rechargeable - ont envahi notre quotidien. Sans cette technologie lithium-ion, téléphones mobiles, tablettes et autres appareils nomades n’existeraient pas ou seraient ...

Du champagne supersonique

Physique du bouchon de champagne

Tout le monde le sait, lorsqu’une bouteille de champagne est débouchée, le bouchon est souvent violemment propulsé… ce qui peut être dangereux s’il percute l’œil. La raison pour laquelle le bouchon saute à environ 50 km/h vient ...

Le matériau le plus noir du monde

Si vous pensiez qu’obtenir un noir intense était chose facile, vous vous trompiez. Depuis de nombreuses années, artistes et scientifiques cherchent la formule du véritable noir, ou du moins à s'en approcher. Par noir véritable, entendez une surface qui ne renverrait aucun rayon lumineux. Actuellement, ...

Organes sur puce, vers un futur bionique ?

Imaginez une puce tenant dans la main qui renfermerait un micro-poumon ? Science fiction ? Fantasme de savant fou ? Absolument pas, il s'agit de choses bien réelles et déjà brevetées ! Apparus courant 2010, les organes sur puce visent à reproduire le fonctionnement de certains organes dans des conditions expérimentales choisies.

Des débuts prometteurs

C'est une équipe de Boston, qui la première a mis au point le premier véritable organe sur puce. Il s'agissait d'un dispositif faisant intervenir la technologie microfluidique. « Visuellement, les organes sur puce ressemblent à des dominos » explique Xavier Gidrol, chef de service au CEA-Irig de Grenoble. Domino dans lequel des micro-canaux transportant de l'air et du liquide proche du sang sont séparés par une couche de cellule endothéliale et épithéliale pulmonaire, mimant la paroi alvéolaire d'un poumon. Cette paroi, et c'est la vraie révolution qu'a apportée l'équipe bostonienne, peut s'étirer en rythme, comme lors de la respiration. Ainsi, ce dispositif permet de mimer à la perfection la fonction de l'organe pulmonaire.

Depuis le premier "poumon sur puce", de nombreux chercheurs se sont penchés sur le sujet, recréant les fonctions de nombreux organes sur des puces en polydiméthylsiloxane (un polymère). À la différence des organoïdes (mini-organes produits à partir de cellules souches), les organes sur puce miment la fonction d'un organe tandis que les autres ont pour vocation de répliquer les organes. Les deux technologies peuvent sembler proches, mais n'impliquent pas les mêmes techniques. Les organoïdes sont cultivés en milieu de culture à partir de cellules souches pluripotentes. Ces cellules se différencient progressivement et s'organisent selon les lois qui les régissent pour former des mini-organes. Dans le cas des organoïdes il s'agit d'auto-organisation tandis que pour les organes sur puce le développement est contrôlé et chaque cellule est placée sciemment.

Une révolution pour l'industrie pharmaceutique

La première application des organes sur puce se situe dans la recherche pharmacologique. Cette technologie pourrait permettre à long terme de se passer des essais réalisés sur les animaux. En plus de l'aspect éthique, l'expérimentation animale possède de nombreuses limites. "Cela fait des années que nous savons soigner le cancer chez la souris alors que nous tâtonnons encore pour l'homme", souligne Mr Gidrol. En effet, l'action d'un médicament peut être très différente lorsqu'on l'administre à une souris ou à un homme. Avec les puces, les cellules utilisées sont d'origine humaine, l'effet des médicaments est donc beaucoup mieux évalué. Par exemple, pour tester l'effet d'un traitement de la mucoviscidose, il suffirait de prendre les cellules pulmonaires d'un patient et de recréer le poumon malade sur puce, puis de tester la substance médicamenteuse. Sur le long terme, les traitements pourraient être personnalisés grâce à cette technique.

Depuis ces premiers pas, l'organe sur puce a beaucoup évolué et les financements suivent cette évolution, ce qui permet à de nombreuses équipes de recherche dans le monde de se concentrer sur la question.

Une technique pleine d'avenir :

Dans le domaine, deux nouveaux axes de recherche sont apparus. L'un représenté par les équipes du CEA de Grenoble, qui cherchent à développer des organoïdes sur puces et l'autre par certains chercheurs aux États-Unis qui essayent de connecter plusieurs organes sur puce entre eux, afin d'obtenir un « corps entier » sur puce (Body on a chip). Le but étant pour les deux axes de se rapprocher le plus possible d'une copie réaliste d'organes. « Le Graal serait de se rapprocher le plus possible du vivant, pour avoir l'organe sur la paillasse » indique Xavier Gidrol, qui travaille sur un organoïde de foie et plus précisément sur des îlots de Langerhans sur puce. À l'avenir, cela permettrait de mieux comprendre le fonctionnement et le développement des organes.

À l'avenir, cette technologie pourrait révolutionner la médecine régénératrice, en greffant des organoïdes à des patients en attente d'une greffe (cela ne remplacerait pas la greffe). Par exemple des personnes atteintes d'un diabète de type I pourraient se voir greffer des îlot de Langerhans élevés sur puce, produisant de l'insuline normalement. Le but serait de restaurer la fonction de l'organe en attendant la greffe d'un organe fonctionnel.

 

Pour en savoir plus :

Article de science et vie : https://www.sciencesetavenir.fr/sante/e-sante/organes-artificiels-ces-puces-qui-miment-le-vivant_92753

Les défi du CEA, dossier : http://www.cea.fr/multimedia/Documents/publications/les-defis-du-cea/les-defis-du-CEA-238.pdf

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Observation directe d'une exoplanète
L'instrument Sphère, installé depuis 2014 sur le Très grand télescope au Chili, a détecté de manière directe une exoplanète à 385 années-lumière de la Terre, une première pour lui.

L'instrument Sphère et ses techniques de détection

Comment détecter les exoplanètes ? L'entreprise est difficile puisque les planètes n'émettent pas de lumière par elles-mêmes, elles réfléchissent celle de leur étoile, qui noie donc leur éclat pour les télescopes situés dans un autre système solaire. Les méthodes indirectes contournent le problème, en observant les effets de la présence d'une planète plutôt que la planète directement : sur le mouvement d'une étoile pour la méthode de la vitesse radiale, sur la luminosité d'une étoile pour la méthode du transit, sur la déviation des rayons lumineux d'une étoile lointaine pour la méthode de l'effet de microlentille gravitationnelle.

Voir l'infographie présentant ces trois techniques indirectes de télédétection spatiale

Aujourd'hui, sur les trois mille six cents exoplanètes détectées depuis 1995, seules quelques-unes ont été observées directement par les méthodes de télédétection spatiale. L'instrument Sphère, pour Spectro Polarimetric High contrast Exoplanet Research, installé sur le VLT, le Very Large Telescope, au Chili, a obtenu dans le domaine infrarouge son premier cliché d'une exoplanète. Conçu pour caractériser des exoplanètes gazeuses et des disques de poussières autour d'étoiles relativement peu éloignées, le système optique est capable de détecter le signal d'une planète jusqu'à un million de fois plus faible que celui de son étoile, l'équivalent de distinguer depuis Paris la flamme d'une bougie déposée à cinquante centimètres seulement de la puissante lumière d'un phare à Marseille.

Cette finesse dans la résolution est obtenue grâce à la technique de coronographie qui atténue spécifiquement la lumière d'une étoile, à la manière d'une éclipse artificielle. En outre, Sphère est équipé d'un miroir déformable corrigeant, plus de mille deux cents fois par seconde et à une échelle nanométrique, les effets de la turbulence atmosphérique. La technique, dite d'optique adaptative, affranchit l'instrument des contraintes météorologiques. Le télescope produit ainsi des images d'aussi bonne qualité que s'il se trouvait dans l'espace, avec l'avantage d'être plus facilement installé et entretenu.

Une exoplanète qui interroge sur la formation des systèmes extrasolaires

Située à environ 385 années-lumière de la Terre, dans l'association d'étoiles du Scorpion-Centaure, l'exoplanète nommée HIP65426b a été photographiée par Sphère et ses composés atmosphériques ont été analysés. Entre six et douze fois plus massive que Jupiter, âgée de dix à dix-sept millions d'année donc relativement jeune, il s'agit d'une géante gazeuse orbitant loin de son étoile, trois fois plus loin que Neptune de notre Soleil. Sa température est estimée entre 1 000 et 1 400 degrés Celsius, tandis que son spectre révèle l'existence d'eau dans son atmosphère et la présence probable de nuages, des caractéristiques semblables à d'autres exoplanètes observées directement.

Son étoile, nommée HIP65426, deux fois plus massive que le Soleil, ne semble pas entourée d'un disque de débris et tourne très rapidement sur elle-même. Deux scénarios permettraient d'expliquer ces particularités, surprenantes pour un système jeune. Soit l'exoplanète s'est déplacée sur une orbite éloignée après sa formation, soit il s'agit d'une étoile qui n'a pas pu aller au bout de son accrétion à cause de la deuxième étoile massive et serait devenue une planète. Les géantes gazeuses façonnant l'architecture des systèmes planétaires du fait de leur masse importante, les observations que Sphère effectuera amélioreront la compréhension de la formation et l'évolution des systèmes extrasolaires.

Publié le 21 juillet 2017

En savoir plus

Les méthodes de détection d'exoplanètes, sur le site Astronomie & Astrophysique

Première découverte d'une exoplanète pour Sphère, sur le site du CNRS

Une planète autour de Proxima du Centaure, sur Science en ligne

Sept exoplanètes prometteuses, sur Sciences en ligne

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email