S'inscrire identifiants oubliés ?

Génomique et médecine personnalisée

L'essor de la génomique

L'intégralité du génome humain a été séquencée, de manière globale, au début des années 2000, dans le cadre d'un projet scientifique d'ampleur inédite. 3 milliards de bases (nucléotides) ont ...

Mercure et environnement

Un comité international de scientifiques a produit une évaluation mondiale du mercure pour l'UNE (Nations Unies pour l'environnement). Le rapport de 2018 démontre une augmentation significative du mercure dans l'atmosphère avec une ...

La bouche artificielle

Comprendre le rôle de la bouche

Tous les jours, plusieurs fois par jour, la bouche effectue la manducation. La manducation est l'action qui regroupe les opérations antérieures à la digestion que sont la préhension, la mastication, l'insalivation, la ventilation et la déglutition.

Nouvelle exploration du sol martien

© NASA/JPL-Caltech

Douzième mission du programme Discovery de la NASA, et unique mission de 2018, InSight (INterior exploration using Seismic Investigations, Geodesy and Heat Transport) a été lancée le 5 mai 2018 et arrivera à destination de Mars le 26 novembre prochain. Son but est d'affiner ...

Des bactéries résistantes aux radiations

© DR / KAERI / A. De Groot

Des rayons nocifs

La radioactivité se caractérise par l'émission de rayonnements alpha, bêta et gamma. Les dommages induits par ces rayonnements ionisants ...

Le nouvel or vert

Fabien Esculier, chercheur à l’École des Ponts ParisTech, a récemment publié les résultats de ses recherches portant sur une gestion alternative des urines et matières fécales. Ces recherches font partie du programme OCAPI (Optimisation des cycles Carbone, Azote et Phosphore en ville) qui ...

BepiColombo

(C) ESA. BepiColombo
La mission spatiale BepiColombo, lancée le 20 octobre 2018, depuis le Centre Spatial de Kourou en Guyane, se dirige vers Mercure.

Deux orbiteurs pour étudier Mercure

Après les sondes américaines Mariner10 en 1973 et Messenger ...

Lasers à l'honneur pour le Prix Nobel 2018

Arthur Ashkin a été primé pour l'invention des «pinces optiques», dont le principe repose sur l'utilisation des forces liées à la réfraction d’un faisceau laser en milieu transparent. Cette force va alors permettre de maintenir et de déplacer des objets microscopiques, voire nanoscopiques tels des atomes, des virus, des bactéries et autres cellules vivantes.
L'avantage de cette technique est qu'elle est non-destructive : les faisceaux lasers peuvent atteindre les éléments internes d'une cellule sans en détruire la membrane. C'est pourquoi elle est très utilisée en biologie où des chercheurs ont, par exemple, réussi à sonder et mesurer les forces entre des particules et l'élasticité de l'ADN ou encore à désobstruer des vaisseaux sanguins.

 

La seconde moitié du Prix a été attribuée à Gérard Mourou, professeur et membre du Haut-collège de l’École polytechnique et Donna Strickland de l'Université de Waterloo, au Canada, pour avoir conjointement élaboré une méthode de génération d’impulsions optiques ultra-courtes de haute intensité.

Dans les années 1980, l'amplification des faisceaux lasers semblait marquer le pas.
La technique mise au point par Mourou et Strickland se nomme «amplification par impulsions» (chirped pulse amplification, CPA). Elle consiste à étirer une brève impulsion laser dans le temps, à l'amplifier puis à la comprimer à nouveau. Le fait d'allonger l'impulsion réduit sa puissance de crête, ce qui permet de l'amplifier sans endommager le dispositif. L'impulsion est ensuite comprimée dans un temps plus court, ce qui augmente considérablement son intensité. Ces impulsions ultra-courtes ont une durée de quelques dizaines de femto-secondes (1fs = 10-15 s), et disposent d'une très haute puissance de l'ordre du pétawatt (1PW=1015 W).

Cette découverte a contribué à l’avancement de la science dans plusieurs domaines de la physique en permettant notamment de fabriquer des lasers de plus en plus intenses pour sonder la matière. Grâce à la précision de coupe obtenue grâce à des impulsions brèves et intenses, la technique CPA a permis des avancées dans le domaine de la chirurgie réfractive de l’œil et du traitement de la cataracte. Elle a également conduit à l'observation de phénomènes ultrarapides tels que les phases transitoires de réactions chimiques.

Publié le 04/10/2018

En savoir plus :

Sur les pinces optiques :
https://www.photoniques.com/articles/photon/pdf/2013/04/photon201366p45.pdf

Sur la CPA :
http://www.cnrs.fr/inp/spip.php?article382
http://www.cea.fr/multimedia/Documents/infographies/impulsions-lasers-femtoseconde-attoseconde_defis-du-cea.pdf

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Radiographier les volcans grâce aux muons
En imagerie géophysique, la tomographie par muons cosmiques permet de comprendre la dynamique du système hydrothermal des volcans.

Flux de muons cosmiques

Dans le modèle standard de la physique des particules, les muons sont des particules élémentaires chargées parfois appelées « électrons lourds ». Produits par la collision entre une particule cosmique et un atome de gaz de la haute atmosphère terrestre, leur durée de vie moyenne est de 2,2 microsecondes. Depuis le ciel, dix mille muons par mètre carré et par minute se déversent sur nous. Très énergétiques, ces particules ont un grand pouvoir de pénétration dans la matière, ce qui signifie qu'elles peuvent traverser plusieurs centaines de mètres de roche.

Installés en contrebas de l'objet d'étude, qui peut être une pyramide, un plateau karstique ou un volcan, les télescopes à muons détectent le flux de ces particules ayant traversé l'objet. Suivant la quantité de matière rencontrée, les flux provenant de différentes directions sont plus ou moins atténués. Mesurer cette atténuation permet de déduire la masse volumique des milieux, autrement dit leur densité. Avec plusieurs télescopes, cette tomographie muonique fournit des représentations en trois dimensions de l'intérieur des volcans.

Les six télescopes de la Soufrière

Sur le volcan de la Soufrière, large d'environ un kilomètre et situé au sud de l'île de Basse-Terre de Guadeloupe, six télescopes à muons sont aujourd'hui installés. La radiographie des entrailles de la structure géologique par cette technologie est développée depuis 2008, Le dernier télescope en date a été placé au nord du volcan, zone qui ne comportait pas encore de télescope à ce moment-là. La couverture angulaire permet ainsi une tomographie muonique en trois dimensions plus complète qu'auparavant, puisque le trou dans l'angle de vue nord est comblé.

Constitués de quatre plaques rectangulaires d'un mètre carré, les télescopes à muons ont besoin d'un temps d'exposition assez long pour accumuler des particules, de la même manière qu'un appareil photo ouvre son obturateur plus ou moins longtemps suivant le flux de lumière qu'il reçoit ou laisse passer. Sur le volcan de la Soufrière, leur résolution temporelle ne descend pas en-dessous d'une dizaine de jours pour former une image. Les informations qu'ils fournissent ne permettent donc pas en l'état de prévenir un événement soudain comme une éruption phréatique, mais se combinent avec des données issues d'autres techniques pour mieux comprendre ce qui se passe dans le volcan.

Mesurer l'activité hydrothermale du volcan

En analysant les contrastes de densité de matière et leurs variations au cours du temps, les télescopes apportent des informations sur la structure interne et la dynamique hydrothermale des volcans. Quel est le volume des réservoirs de vapeur ? Quelle énergie s'accumule dans les roches ? Quels effets ont les saisons des pluies sur l'état des nappes phréatiques autour du dôme ? À quels endroits la vapeur se forme et chasse l'eau liquide ? Comment évoluent les sources des fumerolles, ou les zones exposées à une activité phréatique ? Grâce l'étude du flux du muons, certaines certaines variations de 20% en trois semaines peuvent mettre en évidence des zones concernées par une arrivée brutale de vapeur.

Par exemple, à l'été 2014, les cinq télescopes de l'époque ont détecté la variation d'une masse de cinq cent mille tonnes de fluide. La tomographie muonique a permis l'observation en direct de la formation de poches de vapeur à l'intérieur du volcan, poches qui ont chassé l'eau liquide présente sous le cratère sud. Ces changements rapides à l'échelle géologique, c'est-à-dire en à peine quelques mois, ont pu être reliés à l'intensification du rejet de fumerolles par la Soufrière. Les données actuelles montrent que les mouvements de vapeur du volcan sont aujourd'hui très dynamiques sur son quart sud-est, un endroit donc exposé à une éventuelle activité phréatique. Depuis deux ou trois années, le nord-est du volcan est de plus en plus concerné, une intensification de l'activité hydrothermale dans cette zone qui se traduit par le dépérissement de la végétation du fait de l'extension des zones fumerolliennes vers le nord du volcan.

Détecter et comprendre les flux de particules

En plus de porter le nombre de télescopes muoniques à six, la qualité des instruments a été améliorée. Les matrices de détection ont divisé par deux la taille de leurs pixels, passant à une résolution de dix mètres. Avec quatre ordinateurs par télescope, l'informatique a un impact sur la consommation énergétique du système. Pour chaque télescope, le principal ordinateur de quarante watts a été remplacé par un ordinateur miniature de vingt-cinq watts. Diminuer la quantité de panneaux solaires nécessaire simplifie la quantité de matériel à installer et entretenir autour du télescope.

Afin de mieux analyser où se cache l'information pertinente dans les signaux, les algorithmes de traitement et les méthodes d'analyse des données évoluent également. Des modélisations visent à corriger l'influence de deux fluons de muons parasites. À cause des grands volumes d'atmosphère présents en contrebas des télescopes, placés au flanc du volcan, de rares muons produits en basse altitude remontent et pénètrent les télescopes par l'arrière, selon la même direction. De plus, des muons de très basse énergie peuvent dévier de leur trajectoire dès les premiers mètres du volcans, étant alors détectés par les télescopes sans avoir traversé la structure géologique. Ce flux de muons diffus ne fait varier les résultats que de quelques dix pour cents, sans même modifier les contrastes de densité qui intéressent les géophysiciens. Comme il est constant, les modélisations en cours de finalisation permettront de corriger cet effet a posteriori sur l'ensemble des données.

Article réalisé à partir d'un entretien avec Dominique Gibert, géophysicien, de l'Observatoire des sciences de l'université de Rennes.

Publié le 29 juin 2017

En savoir plus

Des particules cosmiques pour ausculter les volcans, sur CNRS Le Journal

Un documentaire sur le projet Diaphane au volcan de la Soufrière, en Guadeloupe

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email