S'inscrire identifiants oubliés ?

La lutte contre la drépanocytose

Un enjeu majeur de santé publique

Chaque année, 275 000 nouveaux cas sont dépistés dans le monde, chez les nourissons. La drépanocytose touche particulièrement les populations d'Afrique et d'Inde. La France n'est pas totalement épargnée avec un enfant pour ...

Homo sapiens découvert hors d'Afrique

Une équipe internationale vient de découvrir le plus ancien fossile d'Homo sapiens jamais découvert en dehors du continent africain : un maxillaire vieux de près de 200 000 ans exhumé sur le mont Carmel au nord d'Israël qui contraint les paléanthropologues à réviser leurs copies. ...

Désintégration du neutron et matière noire 

Pour expliquer divers effets gravitationnels, les physiciens ont été amenés à supposer l'existence d'une « matière noire » à l'intérieur des galaxies et dans l’espace intergalactique. Parmi les hypothèses relatives à sa nature, on suppose l’existence ...

Une symbiose à l'épreuve du milieu

CC SA 3.0 ©Prenn

Duo de choc : les recherches récentes montrent qu’une plante hôte et un champignon peuvent s’associer par-delà leur milieu naturel. Aidée de son symbiote, la plante devient plus résistante.

Le raisinier des mers antillais en voyage au Sénégal

Le ...

L'essor du taxi aérien

Une interview de Claude Le Tallec, Chargé de mission "Transport aérien personnel" à l'ONERA. 

Qu'est-ce qui, à l'heure actuelle, favorise l'émergence de la thématique des voitures volantes ?

Le notion de « voiture volante » ...

L'horloge nucléaire

Ce qui caractérise la performance d’une horloge, c'est la faiblesse de sa dérive au cours du temps : de combien diffère chaque jour l'heure qu'elle indique par rapport à sa référence ; autrement dit au bout de quelle durée se décale-t-elle d’une seconde ?

Le génome de la rose décrypté

By LaitcheLink to My Website. - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4023663

Notre amie la rose

De toutes les plantes ornementales, les roses sont parmi les plus cultivées au monde, que ce soit pour l'agrément que les rosiers confèrent aux ...

La biolixiviation

Les impacts environnementaux et sociaux des industries minières et le besoin accru de certains métaux comme les terres rares pour les appareils électroniques modernes rendent urgente l'élaboration de solutions nouvelles pour traiter les minerais ou récupérer dans les déchets des éléments de plus en plus recherchés. C'est ce que pourrait apporter un procédé, la biolixiviation.

Une solution biotechnologique éprouvée

La biolixiviation, c’est-à-dire l’extraction de métaux grâce à des micro-organismes, est une technique déjà utilisée pour produire 5 % de tout l’or mondial et 20 % du cuivre et, de façon plus marginale, pour l’extraction du nickel, du zinc, du cobalt et de certaines terres rares. Son développement industriel a réellement débuté il y a moins de 20 ans.
Le procédé s'applique à des réserves de minerai, c’est-à-dire de roches suffisamment riches en minéraux d’intérêt. Il nécessite de grandes quantités d’eau, que l’on rend généralement acide et des micro-organismes préléablement sélectionnés (bactéries, archées ou champignons) qui vont faire le travail d’extraction des minéraux intéressants. Bien souvent, l’apport d'oxygène est nécessaire et parfois, pour certains micro-organismes, l'apport en sucres.

La biolixiviation peut s’effectuer par deux voies. Une voie statique qui consiste à verser directement la solution sur le minerai stocké dans un vallon, une cuvette que l’on a imperméabilisée et au fond de laquelle on récupère les métaux dissous. Et une voie dynamique qui consiste à broyer et concasser finement le minerai pour le placer dans de grands réservoirs appelés bioréacteurs. Le contenu de la cuve est alors sans cesse agité afin d’améliorer la surface de contact entre bactéries et minerai et de rendre l’oxygène plus facilement disponible. Avec l’expérience, on a appris à optimiser la température, l’acidité, la vitesse de mélange, les apports en oxygène, en dioxyde de carbone ou en sucres pour que les microorganismes gagnent en productivité.

Plusieurs atouts économiques

Comparée aux méthodes traditionnelles de récupération des minéraux que sont la pyrométallurgie (extraction par fusion des roches) ou l’hydrométallurgie (extraction par dissolution chimique de la roche), la biolixiviation, qui peut aussi être appelée bio-hydrométallurgie, utilise peu d’énergie, produit beaucoup moins de sous-produits et surtout beaucoup moins de polluants. En outre, la mise en oeuvre est relativement peu coûteuse et permet d’extraire des minéraux à partir de minerais pauvres ou de résidus miniers dont l’exploitation traditionnelle ne serait pas rentable. Ainsi, au Chili par exemple, où la quasi-totalité des minerais riches en cuivre ont été exploités, la biolixiviation a pris le relais pour les ressources restantes à faible teneur en métal. En Ouganda, cela fait maintenant une dizaine d’années que les stériles des mines de cuivre sont utilisées pour produire du cobalt. Cependant, le procédé est beaucoup plus lent et, mal conduit, il peut aussi mener à des catastrophes environnementales. Ainsi, la mine finlandaise de Talvivaara, qui avait mis en place un procédé de biolixiviation pour récupérer nickel, zinc, cobalt et cuivre depuis un minerai faiblement concentré dans les années 2000 a connu d’importantes fuites et défauts d’imperméabilisation qui ont ravagé les eaux aux alentours, avec notamment une fuite d’uranium qui a mené l’entreprise à la faillite.

Une clé pour les terres rares ?

Les terres rares (qui comprennent les 15 lanthanides plus le scandium et l’yttrium) sont des matériaux très prisés en électronique, dans les industries des énergies renouvelables, ou encore pour des applications en optique, en raison de leurs propriétés paramagnétiques et luminescentes. Malgré leur nom, les terres rares sont plutôt abondantes dans la croûte terrestre, mais elles sont très dispersées et ne font pas de filons ou de minerais très concentrés. Par conséquent, leur extraction est compliquée et très coûteuse. L’approvisionnement mondial est aux mains de la Chine (90%) via l’exploitation des sous-produits d’autres industries minières, notamment du fer et du cuivre. Flambée des prix, risque de rupture d’approvisionnement sont des motivations très fortes pour trouver des méthodes alternatives à leur extraction. Parmi elle, la « biolixiviation urbaine », qui consiste à extraire les métaux intéressants des déchets électroniques via des microorganismes, a donné lieu à des réussites intéressantes pour récupérer des éléments rares présents dans des lampes fluorescentes ou des aimants de disques durs. En tout état de cause, le procédé semble être promis à un bel avenir. D’une part, parce que les études menées sur les micro-organismes extrêmophiles se développent, ce qui permet d’améliorer encore les rendements et les conditions de la biolixiviation. A titre d’exemple, des souches de bactéries qui continuent d’être actives en milieu salé permettent de continuer les activités minières dans des pays où l’eau douce s’est faite rare. D’autre part, parce que c’est aussi une technique que l’on envisage pour l’exploitation des minéraux sur d’autres corps célestes (Lune, Mars, astéroïdes) ; des études menées sur la station internationale ayant montré que certains microorganismes extrêmophiles terrestres étaient capables de résister aux conditions extrêmes de l’espace (températures, vide, radiations). Enfin, parce qu’elle sert aussi depuis longtemps comme base pour des opérations de dépollution des sols, on parle alors de bioremédiation par les bactéries.
Publié le 03/05/2018

En savoir plus 

http://www.brgm.fr/projet/biotechnologies-viennent-secours-valorisation-environnement

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Radiographier les volcans grâce aux muons
En imagerie géophysique, la tomographie par muons cosmiques permet de comprendre la dynamique du système hydrothermal des volcans.

Flux de muons cosmiques

Dans le modèle standard de la physique des particules, les muons sont des particules élémentaires chargées parfois appelées « électrons lourds ». Produits par la collision entre une particule cosmique et un atome de gaz de la haute atmosphère terrestre, leur durée de vie moyenne est de 2,2 microsecondes. Depuis le ciel, dix mille muons par mètre carré et par minute se déversent sur nous. Très énergétiques, ces particules ont un grand pouvoir de pénétration dans la matière, ce qui signifie qu'elles peuvent traverser plusieurs centaines de mètres de roche.

Installés en contrebas de l'objet d'étude, qui peut être une pyramide, un plateau karstique ou un volcan, les télescopes à muons détectent le flux de ces particules ayant traversé l'objet. Suivant la quantité de matière rencontrée, les flux provenant de différentes directions sont plus ou moins atténués. Mesurer cette atténuation permet de déduire la masse volumique des milieux, autrement dit leur densité. Avec plusieurs télescopes, cette tomographie muonique fournit des représentations en trois dimensions de l'intérieur des volcans.

Les six télescopes de la Soufrière

Sur le volcan de la Soufrière, large d'environ un kilomètre et situé au sud de l'île de Basse-Terre de Guadeloupe, six télescopes à muons sont aujourd'hui installés. La radiographie des entrailles de la structure géologique par cette technologie est développée depuis 2008, Le dernier télescope en date a été placé au nord du volcan, zone qui ne comportait pas encore de télescope à ce moment-là. La couverture angulaire permet ainsi une tomographie muonique en trois dimensions plus complète qu'auparavant, puisque le trou dans l'angle de vue nord est comblé.

Constitués de quatre plaques rectangulaires d'un mètre carré, les télescopes à muons ont besoin d'un temps d'exposition assez long pour accumuler des particules, de la même manière qu'un appareil photo ouvre son obturateur plus ou moins longtemps suivant le flux de lumière qu'il reçoit ou laisse passer. Sur le volcan de la Soufrière, leur résolution temporelle ne descend pas en-dessous d'une dizaine de jours pour former une image. Les informations qu'ils fournissent ne permettent donc pas en l'état de prévenir un événement soudain comme une éruption phréatique, mais se combinent avec des données issues d'autres techniques pour mieux comprendre ce qui se passe dans le volcan.

Mesurer l'activité hydrothermale du volcan

En analysant les contrastes de densité de matière et leurs variations au cours du temps, les télescopes apportent des informations sur la structure interne et la dynamique hydrothermale des volcans. Quel est le volume des réservoirs de vapeur ? Quelle énergie s'accumule dans les roches ? Quels effets ont les saisons des pluies sur l'état des nappes phréatiques autour du dôme ? À quels endroits la vapeur se forme et chasse l'eau liquide ? Comment évoluent les sources des fumerolles, ou les zones exposées à une activité phréatique ? Grâce l'étude du flux du muons, certaines certaines variations de 20% en trois semaines peuvent mettre en évidence des zones concernées par une arrivée brutale de vapeur.

Par exemple, à l'été 2014, les cinq télescopes de l'époque ont détecté la variation d'une masse de cinq cent mille tonnes de fluide. La tomographie muonique a permis l'observation en direct de la formation de poches de vapeur à l'intérieur du volcan, poches qui ont chassé l'eau liquide présente sous le cratère sud. Ces changements rapides à l'échelle géologique, c'est-à-dire en à peine quelques mois, ont pu être reliés à l'intensification du rejet de fumerolles par la Soufrière. Les données actuelles montrent que les mouvements de vapeur du volcan sont aujourd'hui très dynamiques sur son quart sud-est, un endroit donc exposé à une éventuelle activité phréatique. Depuis deux ou trois années, le nord-est du volcan est de plus en plus concerné, une intensification de l'activité hydrothermale dans cette zone qui se traduit par le dépérissement de la végétation du fait de l'extension des zones fumerolliennes vers le nord du volcan.

Détecter et comprendre les flux de particules

En plus de porter le nombre de télescopes muoniques à six, la qualité des instruments a été améliorée. Les matrices de détection ont divisé par deux la taille de leurs pixels, passant à une résolution de dix mètres. Avec quatre ordinateurs par télescope, l'informatique a un impact sur la consommation énergétique du système. Pour chaque télescope, le principal ordinateur de quarante watts a été remplacé par un ordinateur miniature de vingt-cinq watts. Diminuer la quantité de panneaux solaires nécessaire simplifie la quantité de matériel à installer et entretenir autour du télescope.

Afin de mieux analyser où se cache l'information pertinente dans les signaux, les algorithmes de traitement et les méthodes d'analyse des données évoluent également. Des modélisations visent à corriger l'influence de deux fluons de muons parasites. À cause des grands volumes d'atmosphère présents en contrebas des télescopes, placés au flanc du volcan, de rares muons produits en basse altitude remontent et pénètrent les télescopes par l'arrière, selon la même direction. De plus, des muons de très basse énergie peuvent dévier de leur trajectoire dès les premiers mètres du volcans, étant alors détectés par les télescopes sans avoir traversé la structure géologique. Ce flux de muons diffus ne fait varier les résultats que de quelques dix pour cents, sans même modifier les contrastes de densité qui intéressent les géophysiciens. Comme il est constant, les modélisations en cours de finalisation permettront de corriger cet effet a posteriori sur l'ensemble des données.

Article réalisé à partir d'un entretien avec Dominique Gibert, géophysicien, de l'Observatoire des sciences de l'université de Rennes.

Publié le 29 juin 2017

En savoir plus

Des particules cosmiques pour ausculter les volcans, sur CNRS Le Journal

Un documentaire sur le projet Diaphane au volcan de la Soufrière, en Guadeloupe

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email