S'inscrire identifiants oubliés ?

Transport de l’énergie électrique

La quasi-totalité de l’énergie électrique dans le monde est produite puis transportée vers les villes et les centres industriels sous forme de courant

Atmosphère de la Terre primitive

Auteur C Eeckhout.

L’atmosphère primitive et son évolution

Au Précambrien, l'atmosphère primitive de notre planète était dépourvue d’oxygène et riche en dioxyde de carbone (CO2) et en méthane, ainsi ...

En route vers le Soleil

Credits: NASA/Johns Hopkins APL/Steve Gribben 

Un voyage d'enfer

Baptisée en hommage à l'astrophysicien américain Eugene Parker, qui a posé les bases de la théorie du vent solaire, la mission Parker Solar devrait contribuer à percer les mystères ...

Révolution hydrogène

L'hydrogène carburant :

L'hydrogène (ou dihydrogène - H2) est considéré comme étant un carburant propre puisque sa combustion n'émet ni CO2 ni particules fines, mais uniquement ...

Le verre se met au vert

Production du verre - Domaine public

Le verre, un matériau traditionnel innovant

La production du verre est une activité millénaire, d’abord artisanale, puis industrielle. S’il existe différents types de verres qui se distinguent par leurs compositions, leurs ...

Des nano-balances pour peser des virus

Mesurer le nano monde

Un nano-objet a par définition des dimensions de l'ordre du nanomètre soit (10-9 m). À titre de comparaison, le diamètre d'un cheveu mesure entre 50 et 100 micromètres (10-6 m).

Les nano-objets comprennent entre autres les ...

Nouveau succès pour la mission New Horizons

Pluton et Charon
Credit: NASA/JHUAPL/SwRI

Une première historique

Lancée le 19 janvier 2006, New Horizons est une mission spatiale dédiée à l'observation de Pluton et de la ceinture de Kuiper, cette région du système solaire en forme d'anneau ...

Des crustacés pour produire du biocarburant?

Crustacés xylophages

Les Limnories lignorum ou Limnories du bois sont de petits invertébrés xylophages capables d'ingérer le bois immergé dans l'eau de mer. Ils jouent ainsi un rôle important dans l'écosystème littoral en participant au recyclage de la cellulose et de la lignine, le composant du bois qui lui donne sa rigidité. Ils causent également des dégâts en s'attaquant aux coques des bateaux, aux pontons et autres constructions en bois.

Jusqu'à présent, la faculté des limnories à décomposer la lignine restait un mystère.
En étudiant l'intestin des limnories, une équipe de scientifiques a découvert que l'hémocyanine, protéine responsable de la couleur bleue du sang de ces invertébrés, joue un rôle primordial dans leur capacité à digérer les sucres du bois.

L'hémocyanine est une protéine connue pour son rôle de transporteur de l'oxygène chez certains invertébrés, de la même manière que l'hémoglobine chez les vertébrés.
Alors que l'hémoglobine lie l'oxygène grâce aux atomes de fer de sa structure, qui donnent au sang sa couleur rouge, l'hémocyanine fait de même avec des atomes de cuivre, à l'origine d'une couleur bleue. Les limnories exploitent les propriétés oxydantes de l'hémocyanine pour attaquer les liaisons au sein de la lignine.
 

Une nouvelle piste pour les énergies renouvelables ?

Le Professeur Simon McQueen-Mason, du département de biologie de l'université de York, qui conduit ces recherches, explique que : « Les limnories sont les seuls animaux pourvus d'un système digestif stérile connus à ce jour. Cela rend leur méthode de digestion du bois plus facile à étudier que celle d'autres créatures xylophages comme les termites, chez lesquelles la digestion est assurée par des milliers de microorganismes intestinaux ». 
Il ajoute : « Nous avons découvert que les limnories déchiquètent le bois en le mâchant en de minuscules morceaux avant de se servir de l'hémocyanine pour s'attaquer à la structure de la lignine. »

Les recherches menées par des équipes des universités de York, Portsmouth, Cambridge et Sao Paulo ont révélé que traiter le bois avec l'hémocyanine permet de doubler la quantité de sucre libérée, sans avoir recours à des traitements thermochimiques coûteux et énergivores.

La troisième génération de biocarburants, dont la recherche se focalise pour l'instant sur les microalgues, pourrait bien accueillir ce candidat innatendu. Cette découverte pourrait permettre, à terme, de réduire l'énergie nécessaire pour transformer le bois en biocarburant.

Publié le 14/12/2018

En savoir plus :

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Radiographier les volcans grâce aux muons
En imagerie géophysique, la tomographie par muons cosmiques permet de comprendre la dynamique du système hydrothermal des volcans.

Flux de muons cosmiques

Dans le modèle standard de la physique des particules, les muons sont des particules élémentaires chargées parfois appelées « électrons lourds ». Produits par la collision entre une particule cosmique et un atome de gaz de la haute atmosphère terrestre, leur durée de vie moyenne est de 2,2 microsecondes. Depuis le ciel, dix mille muons par mètre carré et par minute se déversent sur nous. Très énergétiques, ces particules ont un grand pouvoir de pénétration dans la matière, ce qui signifie qu'elles peuvent traverser plusieurs centaines de mètres de roche.

Installés en contrebas de l'objet d'étude, qui peut être une pyramide, un plateau karstique ou un volcan, les télescopes à muons détectent le flux de ces particules ayant traversé l'objet. Suivant la quantité de matière rencontrée, les flux provenant de différentes directions sont plus ou moins atténués. Mesurer cette atténuation permet de déduire la masse volumique des milieux, autrement dit leur densité. Avec plusieurs télescopes, cette tomographie muonique fournit des représentations en trois dimensions de l'intérieur des volcans.

Les six télescopes de la Soufrière

Sur le volcan de la Soufrière, large d'environ un kilomètre et situé au sud de l'île de Basse-Terre de Guadeloupe, six télescopes à muons sont aujourd'hui installés. La radiographie des entrailles de la structure géologique par cette technologie est développée depuis 2008, Le dernier télescope en date a été placé au nord du volcan, zone qui ne comportait pas encore de télescope à ce moment-là. La couverture angulaire permet ainsi une tomographie muonique en trois dimensions plus complète qu'auparavant, puisque le trou dans l'angle de vue nord est comblé.

Constitués de quatre plaques rectangulaires d'un mètre carré, les télescopes à muons ont besoin d'un temps d'exposition assez long pour accumuler des particules, de la même manière qu'un appareil photo ouvre son obturateur plus ou moins longtemps suivant le flux de lumière qu'il reçoit ou laisse passer. Sur le volcan de la Soufrière, leur résolution temporelle ne descend pas en-dessous d'une dizaine de jours pour former une image. Les informations qu'ils fournissent ne permettent donc pas en l'état de prévenir un événement soudain comme une éruption phréatique, mais se combinent avec des données issues d'autres techniques pour mieux comprendre ce qui se passe dans le volcan.

Mesurer l'activité hydrothermale du volcan

En analysant les contrastes de densité de matière et leurs variations au cours du temps, les télescopes apportent des informations sur la structure interne et la dynamique hydrothermale des volcans. Quel est le volume des réservoirs de vapeur ? Quelle énergie s'accumule dans les roches ? Quels effets ont les saisons des pluies sur l'état des nappes phréatiques autour du dôme ? À quels endroits la vapeur se forme et chasse l'eau liquide ? Comment évoluent les sources des fumerolles, ou les zones exposées à une activité phréatique ? Grâce l'étude du flux du muons, certaines certaines variations de 20% en trois semaines peuvent mettre en évidence des zones concernées par une arrivée brutale de vapeur.

Par exemple, à l'été 2014, les cinq télescopes de l'époque ont détecté la variation d'une masse de cinq cent mille tonnes de fluide. La tomographie muonique a permis l'observation en direct de la formation de poches de vapeur à l'intérieur du volcan, poches qui ont chassé l'eau liquide présente sous le cratère sud. Ces changements rapides à l'échelle géologique, c'est-à-dire en à peine quelques mois, ont pu être reliés à l'intensification du rejet de fumerolles par la Soufrière. Les données actuelles montrent que les mouvements de vapeur du volcan sont aujourd'hui très dynamiques sur son quart sud-est, un endroit donc exposé à une éventuelle activité phréatique. Depuis deux ou trois années, le nord-est du volcan est de plus en plus concerné, une intensification de l'activité hydrothermale dans cette zone qui se traduit par le dépérissement de la végétation du fait de l'extension des zones fumerolliennes vers le nord du volcan.

Détecter et comprendre les flux de particules

En plus de porter le nombre de télescopes muoniques à six, la qualité des instruments a été améliorée. Les matrices de détection ont divisé par deux la taille de leurs pixels, passant à une résolution de dix mètres. Avec quatre ordinateurs par télescope, l'informatique a un impact sur la consommation énergétique du système. Pour chaque télescope, le principal ordinateur de quarante watts a été remplacé par un ordinateur miniature de vingt-cinq watts. Diminuer la quantité de panneaux solaires nécessaire simplifie la quantité de matériel à installer et entretenir autour du télescope.

Afin de mieux analyser où se cache l'information pertinente dans les signaux, les algorithmes de traitement et les méthodes d'analyse des données évoluent également. Des modélisations visent à corriger l'influence de deux fluons de muons parasites. À cause des grands volumes d'atmosphère présents en contrebas des télescopes, placés au flanc du volcan, de rares muons produits en basse altitude remontent et pénètrent les télescopes par l'arrière, selon la même direction. De plus, des muons de très basse énergie peuvent dévier de leur trajectoire dès les premiers mètres du volcans, étant alors détectés par les télescopes sans avoir traversé la structure géologique. Ce flux de muons diffus ne fait varier les résultats que de quelques dix pour cents, sans même modifier les contrastes de densité qui intéressent les géophysiciens. Comme il est constant, les modélisations en cours de finalisation permettront de corriger cet effet a posteriori sur l'ensemble des données.

Article réalisé à partir d'un entretien avec Dominique Gibert, géophysicien, de l'Observatoire des sciences de l'université de Rennes.

Publié le 29 juin 2017

En savoir plus

Des particules cosmiques pour ausculter les volcans, sur CNRS Le Journal

Un documentaire sur le projet Diaphane au volcan de la Soufrière, en Guadeloupe

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email