S'inscrire identifiants oubliés ?

Génomique et médecine personnalisée

L'essor de la génomique

L'intégralité du génome humain a été séquencée, de manière globale, au début des années 2000, dans le cadre d'un projet scientifique d'ampleur inédite. 3 milliards de bases (nucléotides) ont ...

Mercure et environnement

Un comité international de scientifiques a produit une évaluation mondiale du mercure pour l'UNE (Nations Unies pour l'environnement). Le rapport de 2018 démontre une augmentation significative du mercure dans l'atmosphère avec une ...

La bouche artificielle

Comprendre le rôle de la bouche

Tous les jours, plusieurs fois par jour, la bouche effectue la manducation. La manducation est l'action qui regroupe les opérations antérieures à la digestion que sont la préhension, la mastication, l'insalivation, la ventilation et la déglutition.

Nouvelle exploration du sol martien

© NASA/JPL-Caltech

Douzième mission du programme Discovery de la NASA, et unique mission de 2018, InSight (INterior exploration using Seismic Investigations, Geodesy and Heat Transport) a été lancée le 5 mai 2018 et arrivera à destination de Mars le 26 novembre prochain. Son but est d'affiner ...

Des bactéries résistantes aux radiations

© DR / KAERI / A. De Groot

Des rayons nocifs

La radioactivité se caractérise par l'émission de rayonnements alpha, bêta et gamma. Les dommages induits par ces rayonnements ionisants ...

Le nouvel or vert

Fabien Esculier, chercheur à l’École des Ponts ParisTech, a récemment publié les résultats de ses recherches portant sur une gestion alternative des urines et matières fécales. Ces recherches font partie du programme OCAPI (Optimisation des cycles Carbone, Azote et Phosphore en ville) qui ...

BepiColombo

(C) ESA. BepiColombo
La mission spatiale BepiColombo, lancée le 20 octobre 2018, depuis le Centre Spatial de Kourou en Guyane, se dirige vers Mercure.

Deux orbiteurs pour étudier Mercure

Après les sondes américaines Mariner10 en 1973 et Messenger ...

Lasers à l'honneur pour le Prix Nobel 2018

Arthur Ashkin a été primé pour l'invention des «pinces optiques», dont le principe repose sur l'utilisation des forces liées à la réfraction d’un faisceau laser en milieu transparent. Cette force va alors permettre de maintenir et de déplacer des objets microscopiques, voire nanoscopiques tels des atomes, des virus, des bactéries et autres cellules vivantes.
L'avantage de cette technique est qu'elle est non-destructive : les faisceaux lasers peuvent atteindre les éléments internes d'une cellule sans en détruire la membrane. C'est pourquoi elle est très utilisée en biologie où des chercheurs ont, par exemple, réussi à sonder et mesurer les forces entre des particules et l'élasticité de l'ADN ou encore à désobstruer des vaisseaux sanguins.

 

La seconde moitié du Prix a été attribuée à Gérard Mourou, professeur et membre du Haut-collège de l’École polytechnique et Donna Strickland de l'Université de Waterloo, au Canada, pour avoir conjointement élaboré une méthode de génération d’impulsions optiques ultra-courtes de haute intensité.

Dans les années 1980, l'amplification des faisceaux lasers semblait marquer le pas.
La technique mise au point par Mourou et Strickland se nomme «amplification par impulsions» (chirped pulse amplification, CPA). Elle consiste à étirer une brève impulsion laser dans le temps, à l'amplifier puis à la comprimer à nouveau. Le fait d'allonger l'impulsion réduit sa puissance de crête, ce qui permet de l'amplifier sans endommager le dispositif. L'impulsion est ensuite comprimée dans un temps plus court, ce qui augmente considérablement son intensité. Ces impulsions ultra-courtes ont une durée de quelques dizaines de femto-secondes (1fs = 10-15 s), et disposent d'une très haute puissance de l'ordre du pétawatt (1PW=1015 W).

Cette découverte a contribué à l’avancement de la science dans plusieurs domaines de la physique en permettant notamment de fabriquer des lasers de plus en plus intenses pour sonder la matière. Grâce à la précision de coupe obtenue grâce à des impulsions brèves et intenses, la technique CPA a permis des avancées dans le domaine de la chirurgie réfractive de l’œil et du traitement de la cataracte. Elle a également conduit à l'observation de phénomènes ultrarapides tels que les phases transitoires de réactions chimiques.

Publié le 04/10/2018

En savoir plus :

Sur les pinces optiques :
https://www.photoniques.com/articles/photon/pdf/2013/04/photon201366p45.pdf

Sur la CPA :
http://www.cnrs.fr/inp/spip.php?article382
http://www.cea.fr/multimedia/Documents/infographies/impulsions-lasers-femtoseconde-attoseconde_defis-du-cea.pdf

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


VKS, l'effet dynamo reproduit en laboratoire
L'expérience de dynamo fluide de la collaboration VKS imite le phénomène de dynamo naturelle, à l'origine des variations des champs magnétiques planétaires et stellaires.

La dynamique du champ magnétique

Le courant électrique que nous utilisons est en grande partie généré par effet dynamo ou en tout cas par des phénomènes similaires. Dans l'Univers, l'effet dynamo joue aussi un rôle clef dans le champ magnétique des planètes et des étoiles. Dans une dynamo solide, l'énergie mécanique du mouvement d'un aimant est convertie en énergie électromagnétique dans la bobine. Dans une dynamo fluide, l'aimant est remplacé par un fluide conducteur dont le mouvement induit un champ magnétique.

En 2007, la collaboration VKS applique cet effet dynamo à du sodium liquide mis en rotation turbulente, d'où son nom d'expérience de dynamo Von-Kármán-Sodium. Dans un cylindre rempli de ce liquide métallique, deux turbines tournent en sens inverse. Lorsque l'on augmente la vitesse de rotation, l'écoulement acquiert toutes les caractéristiques de la turbulence, créant un vortex de liquide, qui génère un champ magnétique. En effet, au-delà d'un certain seuil de turbulence, les variations de champ magnétique au niveau moléculaire se renforcent les unes les autres, créant un champ magnétique à l'échelle macroscopique. En 2017, une équipe a utilisé la géométrie de cette expérience pour réaliser une simulation à haute résolution de cet effet dynamo. Le flux de sodium est modélisé à l'intérieur même du dispositif, non plus seulement au niveau des pales.

Mieux comprendre les champs magnétiques des corps célestes

La plupart des planètes, étoiles et galaxies possèdent un champ magnétique, engendré spontanément par l'effet de dynamo fluide. Dans le cas des dynamos stellaires et planétaires, les écoulements à leur origine sont généralement provoqués par le mouvement d’ensemble de l'astre. L'expérience VKS et ses simulations permettent d'imposer ce type de rotation à un fluide en faisant tourner une turbine plus rapidement que l’autre. Le champ magnétique alors obtenu évolue au cours du temps, avec des renversements erratiques de sa direction, un comportement similaire à ce que l’on sait de l’évolution du champ terrestre au cours des âges.

Certaines caractéristiques de la dynamo d'objets astronomiques à cœur liquide et conducteur peuvent donc être étudiées en laboratoire, dans des situations contrôlées. C'est le cas de la Terre, où le champ magnétique passe d'un état stable à un état présentant des inversions périodiques, tous les cent mille ans environ, le dernier s'étant déroulé il y a sept cent mille ans. En plus de laisser dans les sédiments des traces utiles pour reconstituer le passé géologique de notre planète, les variations du champ magnétique affaiblissent la magnétosphère durant les quelques milliers d'années que dure en moyenne un renversement. Un tel phénomène pourrait exposer nos réseaux de télécommunications aux rayons solaires et cosmiques.

En savoir plus

Étudier sur Terre la génération du champ magnétique à l'intérieur des étoiles et des planètes, sur Le fil Science et Technos, site du CEA

Le champ magnétique de deux aimants, sur Sciences en ligne

Origine du champ magnétique solaire, à propos de la dynamo solaire

La rédaction de Sciences en Ligne
Twitter Facebook Google Plus Linkedin email
Entrées associées