S'inscrire identifiants oubliés ?

Le délai de Newton-Wigner

(C) Wikimedia

Une avancée récente devrait permettre une meilleure maîtrise de la transmission de l’information par fibre optique

Un peu de réflexion
Dans une fibre ...

Prix Nobel de chimie 2017

© Martin Högbom/The Royal Swedish Academy of Sciences

Le prix Nobel de Chimie 2017 a été attribué à trois scientifiques pour leurs travaux permettant l'avènement de la cryo-microscopie électronique. Cette technique d'imagerie consiste à geler les molécules ...

Ondes gravitationnelles : du nouveau

Les ondes gravitationnelles et la Relativité générale 

Albert Einstein a révolutionné la physique moderne, d'abord en 1905 avec la théorie de la Relativité restreinte, puis en 1915 avec la théorie de la Relativité Générale. Cette dernière ...

Tchouri ou l'âge des comètes

La mission Rosetta de l'ESA a montré que la comète « Tchouri » (67P Churyumov-Gerasimenko), sur laquelle l'atterrisseur de la sonde a fini par s'écraser, est composée à près de 40 % de molécules organiques. D'après les travaux de Jean-Loup Bertaux, du Laboratoire ...

Cassini, la descente finale

Une mission exceptionnelle

Cassini est un projet  d'exploration spatiale très ambitieux, avec une sonde qui aura passé près de 20 ans dans l'espace. La sonde Cassini elle-même est la première à être mise en orbite autour de Saturne, dont les missions Voyager ...

Alzheimer et l'immunité du cerveau

Qui est touché par la maladie d'Alzheimer ?

La maladie neurodégénérative d’Alzheimer est la cause la plus courante de démence, puisqu'elle serait à l’origine de près de 70% des cas. Ses premières ...

Vers un nouvel outil de génie génétique

Que sont les ARN circulaires ?

L'ARN, acide ribonucléique constitué principalement d'un seul brin de nucléotide, est une molécule non codante ou participant à l'expression du

Observation directe d'une exoplanète

L'instrument Sphère et ses techniques de détection

Comment détecter les exoplanètes ? L'entreprise est difficile puisque les planètes n'émettent pas de lumière par elles-mêmes, elles réfléchissent celle de leur étoile, qui noie donc leur éclat pour les télescopes situés dans un autre système solaire. Les méthodes indirectes contournent le problème, en observant les effets de la présence d'une planète plutôt que la planète directement : sur le mouvement d'une étoile pour la méthode de la vitesse radiale, sur la luminosité d'une étoile pour la méthode du transit, sur la déviation des rayons lumineux d'une étoile lointaine pour la méthode de l'effet de microlentille gravitationnelle.

Voir l'infographie présentant ces trois techniques indirectes de télédétection spatiale

Aujourd'hui, sur les trois mille six cents exoplanètes détectées depuis 1995, seules quelques-unes ont été observées directement par les méthodes de télédétection spatiale. L'instrument Sphère, pour Spectro Polarimetric High contrast Exoplanet Research, installé sur le VLT, le Very Large Telescope, au Chili, a obtenu dans le domaine infrarouge son premier cliché d'une exoplanète. Conçu pour caractériser des exoplanètes gazeuses et des disques de poussières autour d'étoiles relativement peu éloignées, le système optique est capable de détecter le signal d'une planète jusqu'à un million de fois plus faible que celui de son étoile, l'équivalent de distinguer depuis Paris la flamme d'une bougie déposée à cinquante centimètres seulement de la puissante lumière d'un phare à Marseille.

Cette finesse dans la résolution est obtenue grâce à la technique de coronographie qui atténue spécifiquement la lumière d'une étoile, à la manière d'une éclipse artificielle. En outre, Sphère est équipé d'un miroir déformable corrigeant, plus de mille deux cents fois par seconde et à une échelle nanométrique, les effets de la turbulence atmosphérique. La technique, dite d'optique adaptative, affranchit l'instrument des contraintes météorologiques. Le télescope produit ainsi des images d'aussi bonne qualité que s'il se trouvait dans l'espace, avec l'avantage d'être plus facilement installé et entretenu.

Une exoplanète qui interroge sur la formation des systèmes extrasolaires

Située à environ 385 années-lumière de la Terre, dans l'association d'étoiles du Scorpion-Centaure, l'exoplanète nommée HIP65426b a été photographiée par Sphère et ses composés atmosphériques ont été analysés. Entre six et douze fois plus massive que Jupiter, âgée de dix à dix-sept millions d'année donc relativement jeune, il s'agit d'une géante gazeuse orbitant loin de son étoile, trois fois plus loin que Neptune de notre Soleil. Sa température est estimée entre 1 000 et 1 400 degrés Celsius, tandis que son spectre révèle l'existence d'eau dans son atmosphère et la présence probable de nuages, des caractéristiques semblables à d'autres exoplanètes observées directement.

Son étoile, nommée HIP65426, deux fois plus massive que le Soleil, ne semble pas entourée d'un disque de débris et tourne très rapidement sur elle-même. Deux scénarios permettraient d'expliquer ces particularités, surprenantes pour un système jeune. Soit l'exoplanète s'est déplacée sur une orbite éloignée après sa formation, soit il s'agit d'une étoile qui n'a pas pu aller au bout de son accrétion à cause de la deuxième étoile massive et serait devenue une planète. Les géantes gazeuses façonnant l'architecture des systèmes planétaires du fait de leur masse importante, les observations que Sphère effectuera amélioreront la compréhension de la formation et l'évolution des systèmes extrasolaires.

Publié le 21 juillet 2017

En savoir plus

Les méthodes de détection d'exoplanètes, sur le site Astronomie & Astrophysique

Première découverte d'une exoplanète pour Sphère, sur le site du CNRS

Une planète autour de Proxima du Centaure, sur Science en ligne

Sept exoplanètes prometteuses, sur Sciences en ligne

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


VKS, l'effet dynamo reproduit en laboratoire
L'expérience de dynamo fluide de la collaboration VKS imite le phénomène de dynamo naturelle, à l'origine des variations des champs magnétiques planétaires et stellaires.

La dynamique du champ magnétique

Le courant électrique que nous utilisons est en grande partie généré par effet dynamo ou en tout cas par des phénomènes similaires. Dans l'Univers, l'effet dynamo joue aussi un rôle clef dans le champ magnétique des planètes et des étoiles. Dans une dynamo solide, l'énergie mécanique du mouvement d'un aimant est convertie en énergie électromagnétique dans la bobine. Dans une dynamo fluide, l'aimant est remplacé par un fluide conducteur dont le mouvement induit un champ magnétique.

En 2007, la collaboration VKS applique cet effet dynamo à du sodium liquide mis en rotation turbulente, d'où son nom d'expérience de dynamo Von-Kármán-Sodium. Dans un cylindre rempli de ce liquide métallique, deux turbines tournent en sens inverse. Lorsque l'on augmente la vitesse de rotation, l'écoulement acquiert toutes les caractéristiques de la turbulence, créant un vortex de liquide, qui génère un champ magnétique. En effet, au-delà d'un certain seuil de turbulence, les variations de champ magnétique au niveau moléculaire se renforcent les unes les autres, créant un champ magnétique à l'échelle macroscopique. En 2017, une équipe a utilisé la géométrie de cette expérience pour réaliser une simulation à haute résolution de cet effet dynamo. Le flux de sodium est modélisé à l'intérieur même du dispositif, non plus seulement au niveau des pales.

Mieux comprendre les champs magnétiques des corps célestes

La plupart des planètes, étoiles et galaxies possèdent un champ magnétique, engendré spontanément par l'effet de dynamo fluide. Dans le cas des dynamos stellaires et planétaires, les écoulements à leur origine sont généralement provoqués par le mouvement d’ensemble de l'astre. L'expérience VKS et ses simulations permettent d'imposer ce type de rotation à un fluide en faisant tourner une turbine plus rapidement que l’autre. Le champ magnétique alors obtenu évolue au cours du temps, avec des renversements erratiques de sa direction, un comportement similaire à ce que l’on sait de l’évolution du champ terrestre au cours des âges.

Certaines caractéristiques de la dynamo d'objets astronomiques à cœur liquide et conducteur peuvent donc être étudiées en laboratoire, dans des situations contrôlées. C'est le cas de la Terre, où le champ magnétique passe d'un état stable à un état présentant des inversions périodiques, tous les cent mille ans environ, le dernier s'étant déroulé il y a sept cent mille ans. En plus de laisser dans les sédiments des traces utiles pour reconstituer le passé géologique de notre planète, les variations du champ magnétique affaiblissent la magnétosphère durant les quelques milliers d'années que dure en moyenne un renversement. Un tel phénomène pourrait exposer nos réseaux de télécommunications aux rayons solaires et cosmiques.

En savoir plus

Étudier sur Terre la génération du champ magnétique à l'intérieur des étoiles et des planètes, sur Le fil Science et Technos, site du CEA

Le champ magnétique de deux aimants, sur Sciences en ligne

Origine du champ magnétique solaire, à propos de la dynamo solaire

La rédaction de Sciences en Ligne
Twitter Facebook Google Plus Linkedin email
Entrées associées