S'inscrire identifiants oubliés ?

L'horloge nucléaire

Ce qui caractérise la performance d’une horloge, c'est la faiblesse de sa dérive au cours du temps : de combien diffère chaque jour l'heure qu'elle indique par rapport à sa référence ; autrement dit au bout de quelle durée se décale-t-elle d’une seconde ?

Le génome de la rose décrypté

By LaitcheLink to My Website. - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4023663

Notre amie la rose

De toutes les plantes ornementales, les roses sont parmi les plus cultivées au monde, que ce soit pour l'agrément que les rosiers confèrent aux ...

La biolixiviation

Les impacts environnementaux et sociaux des industries minières et le besoin accru de certains métaux comme les terres rares pour les appareils électroniques modernes rendent urgente l'élaboration de solutions nouvelles pour traiter les minerais ...

Rouge-gorge et physique quantique

L'origine de l'exceptionnel sens de l'orientation de certain animaux, notamment les oiseaux migrateurs, fait de longue date l'objet de recherches scientifiques. La sensibilité au champ magnétique dont ils seraient dotés semble jouer un rôle crucial. Une piste d'explication trouvée récemment de ...

Bluetooth a vingt ans

Un protocole pour supprimer les câbles

À la fin des années 1990, avec l'irruption de la téléphonie mobile dans la vie quotidienne, les constructeurs cherchent une solution pour supprimer des câbles de raccordement entre le téléphone portable et les oreillettes. ...

La photosynthèse artificielle

CC by U.S. Department of Energy / United Joint Center for Artificial Photosynthesis

Une quête bioinspirée

La photosynthèse est le mécanisme grâce auquel les plantes produisent des matières organiques telles les glucides, en utilisant l'énergie ...

Asthme : pistes thérapeutiques

CC BY-SA 4.0 BruceBlaus

Une maladie incurable

En France, l'asthme touche plus de quatre millions de personnes et cause environ 1000 décès chaque année. Généralement de nature allergique (70% des formes d'asthme), l'asthme provoque des difficultés ...

Des métamatériaux aux propriétés étonnantes

(C) Tobias Frenzel

Les métamatériaux constituent un champ de recherche actif, en particulier dans les domaines de l'électromagnétisme et de la mécanique. L'objectif est de conférer à des matériaux des propriétés particulières, en particulier en ce qui concerne leur interaction avec des ondes électromagnétiques ou mécaniques (absorption, réflexion, etc.). La méthode utilisée consiste à concevoir et réaliser des matériaux ayant des structures qui leur confèrent ces propriétés, notamment l'invisibilité ! Ces structures sont généralement constitués par la répétition périodique de motifs de dimension inférieure à la longueur d’onde caractéristique du phénomène à contrôler (de la dizaine de nanomètres à plusieurs mètres selon le domaine considéré).

Un enseignant-chercheur de l'Université Bourgogne Franche-Comté au sein du l’institut FEMTO-ST, Muamer Kadic en collaboration avec des partenaires du Karlsruhe Institute of Technology (KIT) ont ainsi obtenu un métamatériau doté d'une propriété mécanique étonnante. Cet assemblage synthétique réagit à une pression qui lui est imposée par un mouvement de torsion. Une réponse impossible dans un matériau continu naturel. La recette appliquée par Muamer Kadic et ses collègues : des motifs chiraux, c'est-à-dire non superposables à leur image dans un miroir, comme l'est la main (chiros, en grec), et une fabrication par impression laser 3D de précision micrométrique.

S’ajoutent à cette nouvelle propriété mécanique d’autres fonctionnalités propres à ce métamatériau telles que l’allégement structurel et l’accroissement de rigidité. Protéger des objets d’ondes mécaniques indésirables pourrait en être une application potentielle. 
Publié le 16 mars 2018

Source 
http://www.femto-st.fr/fr/L-institut/Actualite/?eid=395&y=2018

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


VKS, l'effet dynamo reproduit en laboratoire
L'expérience de dynamo fluide de la collaboration VKS imite le phénomène de dynamo naturelle, à l'origine des variations des champs magnétiques planétaires et stellaires.

La dynamique du champ magnétique

Le courant électrique que nous utilisons est en grande partie généré par effet dynamo ou en tout cas par des phénomènes similaires. Dans l'Univers, l'effet dynamo joue aussi un rôle clef dans le champ magnétique des planètes et des étoiles. Dans une dynamo solide, l'énergie mécanique du mouvement d'un aimant est convertie en énergie électromagnétique dans la bobine. Dans une dynamo fluide, l'aimant est remplacé par un fluide conducteur dont le mouvement induit un champ magnétique.

En 2007, la collaboration VKS applique cet effet dynamo à du sodium liquide mis en rotation turbulente, d'où son nom d'expérience de dynamo Von-Kármán-Sodium. Dans un cylindre rempli de ce liquide métallique, deux turbines tournent en sens inverse. Lorsque l'on augmente la vitesse de rotation, l'écoulement acquiert toutes les caractéristiques de la turbulence, créant un vortex de liquide, qui génère un champ magnétique. En effet, au-delà d'un certain seuil de turbulence, les variations de champ magnétique au niveau moléculaire se renforcent les unes les autres, créant un champ magnétique à l'échelle macroscopique. En 2017, une équipe a utilisé la géométrie de cette expérience pour réaliser une simulation à haute résolution de cet effet dynamo. Le flux de sodium est modélisé à l'intérieur même du dispositif, non plus seulement au niveau des pales.

Mieux comprendre les champs magnétiques des corps célestes

La plupart des planètes, étoiles et galaxies possèdent un champ magnétique, engendré spontanément par l'effet de dynamo fluide. Dans le cas des dynamos stellaires et planétaires, les écoulements à leur origine sont généralement provoqués par le mouvement d’ensemble de l'astre. L'expérience VKS et ses simulations permettent d'imposer ce type de rotation à un fluide en faisant tourner une turbine plus rapidement que l’autre. Le champ magnétique alors obtenu évolue au cours du temps, avec des renversements erratiques de sa direction, un comportement similaire à ce que l’on sait de l’évolution du champ terrestre au cours des âges.

Certaines caractéristiques de la dynamo d'objets astronomiques à cœur liquide et conducteur peuvent donc être étudiées en laboratoire, dans des situations contrôlées. C'est le cas de la Terre, où le champ magnétique passe d'un état stable à un état présentant des inversions périodiques, tous les cent mille ans environ, le dernier s'étant déroulé il y a sept cent mille ans. En plus de laisser dans les sédiments des traces utiles pour reconstituer le passé géologique de notre planète, les variations du champ magnétique affaiblissent la magnétosphère durant les quelques milliers d'années que dure en moyenne un renversement. Un tel phénomène pourrait exposer nos réseaux de télécommunications aux rayons solaires et cosmiques.

En savoir plus

Étudier sur Terre la génération du champ magnétique à l'intérieur des étoiles et des planètes, sur Le fil Science et Technos, site du CEA

Le champ magnétique de deux aimants, sur Sciences en ligne

Origine du champ magnétique solaire, à propos de la dynamo solaire

La rédaction de Sciences en Ligne
Twitter Facebook Google Plus Linkedin email
Entrées associées