S'inscrire identifiants oubliés ?

Physique de l’espresso

Une recette ancestrale

Dans les grandes lignes, depuis son invention en 1884, la préparation d’un espresso consiste à forcer de l’eau chaude à passer assez rapidement à travers du café moulu très fin. Plus précisément, la température de l’eau ...

Des panneaux solaires bifaces

Les panneaux solaires : du silicium « dopé »

Dans un panneau solaire, l’énergie lumineuse est convertie en courant électrique, grâce à l’effet photoélectrique où un photon arrache un électron à un atome. Pour cela, il faut ...

Les électrons peuvent s’écouler comme l’eau

Lorsque l’eau s’écoule dans un tuyau, ce sont les interactions entre ses molécules qui la freinent. A l’inverse, lorsque des électrons s’écoulent dans un fil conducteur, c’est avant tout le fil lui-même qui les freine. Une équipe de chercheurs britanniques et israéliens, ...

Les cristaux temporels

Réseaux cristallins associés à l'eau. by Psi?edelisto, based on version by Dbuckingham42 - Own work, CC BY-SA 4.0,

Cristal et brisure de symétrie 

Un cristal est un état de la matière dans lequel les atomes sont ordonnés selon une périodicité spatiale ...

Du ribose dans les météorites

Le ribose, sucre vital

L’ADN - ou acide désoxyribonucléique - est formé en particulier d’un sucre, le désoxyribose, lui-même un dérivé du ribose (C5H10O5). Plus précisément, dans le désoxyribose (C5H10O4) un groupement hydroxyle (-OH) du ribose ...

Un nouveau comportement des électrons

Cooper pairs - Tem5psu CC BY-SA
Isolants, conducteurs et semi-conducteurs

Le comportement d’un solide cristallin relativement au courant électrique, peut être celui d’un isolant, d’un semi-conducteur, d’un métal ou d’un supraconducteur. Dans les isolants, ...

Interférences et biomolécules

CC BY-SA 4.0 Alexandre Gondran
Les expériences d’interférences mettant en jeu des molécules de plus en plus grosses et lourdes révèlent que les lois de la mécanique quantique sont applicables bien au-delà du monde de « l’infiniment petit » ...

Anomalie de dilatation thermique

By Simon Mer - Own work, CC BY-SA 4.0
Généralement, les matériaux se dilatent lorsqu’ils sont chauffés. La raison en est qu’une élévation de température correspond à une augmentation de l’agitation des atomes, or cette agitation n’est pas symétrique. En effet, deux atomes liés au repos sont espacés d’une distance optimale d’un point de vue énergétique, et ont beaucoup plus de mal à se rapprocher très près, que de s’éloigner l’un de l’autre. Cela résulte du fait que la force répulsive croit extrêmement vite si l’on cherche à diminuer la longueur de liaison, alors que la force attractive croit très lentement lorsqu’on tente d’augmenter cette longueur. En somme, la liaison interatomique agit comme « ressort » qui se comprime plus difficilement qu’il ne s’étire. Par conséquent l’agitation thermique a plutôt tendance à augmenter les distances interatomiques, donc le volume.

Pourtant, il existe des exceptions, comme l’eau lorsqu’elle gèle et qui est d’ailleurs l’exemple le plus courant. Plus précisément, la densité maximale de l’eau se situe vers 4°C, ce qui signifie que le liquide voit son volume diminuer lorsque la température grimpe de 0°C à 4°C. Sur cette plage de température, l’eau possède un « coefficient de dilatation négatif ». Certains éléments du tableau périodique se comportent également de cette manière, leur congélation provoquant une diminution de leur densité, le solide flottant sur le liquide. C’est le cas du silicium, du bismuth, du gallium, du germanium, du plutonium et de l’antimoine. Il s’agit là d’exemples d’anomalie de dilatation ne concernant qu’une petite plage de température ou n’ayant lieu que lors du changement de phase liquide - solide. Mettons l’eau liquide et les changements de phase de côté et intéressons-nous à des solides cristallins.

Existe-t-il de tels matériaux ayant un coefficient de dilatation négatif ? La réponse est oui et cela est bien mystérieux. Un des exemples les plus étudiés est le tungstate de zirconium (ZrW2O8) qui exhibe cette anomalie entre -273°C et 777°C. Un autre est le trifluorure de scandium (ScF3) entre -263°C et 827°C. D’autres exemples sont également connus, comme certains silicates, cyanures, les nanotubes de carbone, la glace elle-même quand elle est refroidie à – 200°C… Les études récentes du trifluorure de scandium (ScF3) commencent à lever le voile sur le mystère du coefficient négatif des solides cristallins. La distance entre des atomes liés ne diminue pas, mais c’est l’agitation de la structure cristalline qui permet une réduction de volume comme sur le schéma ci-dessous. Il est fort probable que toutes les autres anomalies puissent s’expliquer selon ce même modèle.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Thomas Pesquet redescend sur Terre
Après une mission scientifique de deux cents jours à bord de la station spatiale internationale, la capsule Soyouz ramenant Thomas Pesquet et Oleg Novitski a atterri sur Terre.

La fin d'une mission de deux cents jours

Ce vendredi 2 juin 2017, le spationaute français Thomas Pesquet et le cosmonaute russe Oleg Novitski ont quitté l'ISS (International Space Station), qui gravite à 400 km de la Terre. Après un séjour de près de 200 jours dans l'espace, soit six mois et demi, dans à peine 400 m3 habitables, il leur a fallu trois heures et une vingtaine de minutes pour atterrir, vers 16 h 10 selon l'heure de Paris, dans les steppes du Kazakhstan.

Lors de cette mission, Thomas Pesquet a réalisé deux sorties dans l'espace, qui se sont parfaitement bien déroulées. Il a également participé à 78 expériences scientifiques prévues dans son programme, dont sept sous l’égide du CNES (Centre national des études spatiales). Le tout en partageant son aventure sur les réseaux sociaux.

Les étapes d'une redescente

Les deux hommes ont quitté l'ISS à bord du vaisseau russe Soyouz, qui s'est désarrimé de la station spatiale un peu avant 13 heures. Deux heures et demie plus tard, situé à une distance sans danger de la station, les moteurs principaux de la capsule Soyouz sont activés pendant un peu moins de cinq minutes pour la manœuvre de désorbitation. En amorçant sa descente, il se scinde en trois parties. Le module orbital et le module de service s'éloignent et brûlent dans l'atmosphère, tandis que le module de descente se réoriente pour mettre en avant son bouclier thermique. En traversant l'atmosphère, les frottements lui font affronter des températures allant jusqu'à 1600 °C, ce qui coupe momentanément les communications radio.

Lors de la rentrée atmosphérique, du fait de la décélération, les voyageurs de l'espace retrouvent brutalement la gravité terrestre, en ressentant jusqu'à quatre fois leur poids. À une dizaine de kilomètres d'altitude, les parachutes se déploient, freinant encore Soyouz, suivis de la grande voile de mille mètres carrés. À quelques mètres de la surface, enfin, les rétrofusées finissent de ralentir le module. Dès que celui-ci touche le sol, les équipes de récupération et de secours se dirigent vers le point d'atterrissage. Les deux hommes sont extraits de la capsule, avant de suivre une batterie d’examens médicaux à visée scientifique, qui permettront à une équipe médicale de l'Agence spatiale européenne de surveiller leur réadaptation à la gravité.

En savoir plus

Mission Proxima, un vol pour l'avenir, sur Sciences en ligne

Thomas Pesquet en contact radio avec des élèves, sur Explorathèque

Le live du vendredi 2 juin 2017, sur franceinfo

Le site Proxima, du CNES

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email