S'inscrire identifiants oubliés ?

Transport de l’énergie électrique

La quasi-totalité de l’énergie électrique dans le monde est produite puis transportée vers les villes et les centres industriels sous forme de courant

Atmosphère de la Terre primitive

Auteur C Eeckhout.

L’atmosphère primitive et son évolution

Au Précambrien, l'atmosphère primitive de notre planète était dépourvue d’oxygène et riche en dioxyde de carbone (CO2) et en méthane, ainsi ...

En route vers le Soleil

Credits: NASA/Johns Hopkins APL/Steve Gribben 

Un voyage d'enfer

Baptisée en hommage à l'astrophysicien américain Eugene Parker, qui a posé les bases de la théorie du vent solaire, la mission Parker Solar devrait contribuer à percer les mystères ...

Révolution hydrogène

L'hydrogène carburant :

L'hydrogène (ou dihydrogène - H2) est considéré comme étant un carburant propre puisque sa combustion n'émet ni CO2 ni particules fines, mais uniquement ...

Le verre se met au vert

Production du verre - Domaine public

Le verre, un matériau traditionnel innovant

La production du verre est une activité millénaire, d’abord artisanale, puis industrielle. S’il existe différents types de verres qui se distinguent par leurs compositions, leurs ...

Des nano-balances pour peser des virus

Mesurer le nano monde

Un nano-objet a par définition des dimensions de l'ordre du nanomètre soit (10-9 m). À titre de comparaison, le diamètre d'un cheveu mesure entre 50 et 100 micromètres (10-6 m).

Les nano-objets comprennent entre autres les ...

Nouveau succès pour la mission New Horizons

Pluton et Charon
Credit: NASA/JHUAPL/SwRI

Une première historique

Lancée le 19 janvier 2006, New Horizons est une mission spatiale dédiée à l'observation de Pluton et de la ceinture de Kuiper, cette région du système solaire en forme d'anneau ...

Des crustacés pour produire du biocarburant?

Crustacés xylophages

Les Limnories lignorum ou Limnories du bois sont de petits invertébrés xylophages capables d'ingérer le bois immergé dans l'eau de mer. Ils jouent ainsi un rôle important dans l'écosystème littoral en participant au recyclage de la cellulose et de la lignine, le composant du bois qui lui donne sa rigidité. Ils causent également des dégâts en s'attaquant aux coques des bateaux, aux pontons et autres constructions en bois.

Jusqu'à présent, la faculté des limnories à décomposer la lignine restait un mystère.
En étudiant l'intestin des limnories, une équipe de scientifiques a découvert que l'hémocyanine, protéine responsable de la couleur bleue du sang de ces invertébrés, joue un rôle primordial dans leur capacité à digérer les sucres du bois.

L'hémocyanine est une protéine connue pour son rôle de transporteur de l'oxygène chez certains invertébrés, de la même manière que l'hémoglobine chez les vertébrés.
Alors que l'hémoglobine lie l'oxygène grâce aux atomes de fer de sa structure, qui donnent au sang sa couleur rouge, l'hémocyanine fait de même avec des atomes de cuivre, à l'origine d'une couleur bleue. Les limnories exploitent les propriétés oxydantes de l'hémocyanine pour attaquer les liaisons au sein de la lignine.
 

Une nouvelle piste pour les énergies renouvelables ?

Le Professeur Simon McQueen-Mason, du département de biologie de l'université de York, qui conduit ces recherches, explique que : « Les limnories sont les seuls animaux pourvus d'un système digestif stérile connus à ce jour. Cela rend leur méthode de digestion du bois plus facile à étudier que celle d'autres créatures xylophages comme les termites, chez lesquelles la digestion est assurée par des milliers de microorganismes intestinaux ». 
Il ajoute : « Nous avons découvert que les limnories déchiquètent le bois en le mâchant en de minuscules morceaux avant de se servir de l'hémocyanine pour s'attaquer à la structure de la lignine. »

Les recherches menées par des équipes des universités de York, Portsmouth, Cambridge et Sao Paulo ont révélé que traiter le bois avec l'hémocyanine permet de doubler la quantité de sucre libérée, sans avoir recours à des traitements thermochimiques coûteux et énergivores.

La troisième génération de biocarburants, dont la recherche se focalise pour l'instant sur les microalgues, pourrait bien accueillir ce candidat innatendu. Cette découverte pourrait permettre, à terme, de réduire l'énergie nécessaire pour transformer le bois en biocarburant.

Publié le 14/12/2018

En savoir plus :

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Des imprimantes pour réparer le genou
Pour faciliter la réparation des genoux, la bio-impression d'hydrogel ouvre la voie à des implants biocompatibles, adaptés à chaque cas et à terme peu coûteux.

Le ménisque, un cartilage précieux

Le genou humain est un mécanisme complexe, dont la blessure se montre handicapante, ainsi que difficile et coûteuse à réparer. Chacun de nos genoux possède deux ménisques, des petits cartilages situés entre le fémur et le tibia sans s’interposer complètement entre les deux os. Le ménisque se compose de deux couches complémentaires, un milieu rigide et une couche extérieure douce. En laissant persister un contact entre le cartilage du fémur et celui du tibia, le ménisque amortit et stabilise le genou, en autorisant des déplacements.

Contrairement à l'os, innervé et vascularisé, le cartilage est un tissu qui se régénère peu et cicatrise difficilement. Les genoux blessés nécessitent donc souvent une intervention chirurgicale, comprenant le retrait du ménisque endommagé et le remplacement par des implants. Ceux-ci sont en général incompatibles avec les tissus biologiques environnants, car formés de plastique. De plus, ils constituent une réplique inadaptée de l’original, en terme de solidité et d'élasticité.

Des implants en bio-impression

Un candidat privilégié pour le développement d'implants biocompatibles, sur-mesure et peu coûteux est l’hydrogel. Les hydrogels sont des polymères, constitués en grande partie d’eau et aussi flexibles que les tissus vivants. Dans cette optique, une équipe de chercheur·euse·s travaillent à combiner un hydrogel solide et un hydrogel extensible, afin d’obtenir un biomatériau aussi proche du cartilage que possible. Une argile de nanoparticules a été ajoutée à l'hydrogel, de manière à rendre la substance souple en cas de tension avant de se durcir rapidement.

L’hydrogel, imprimable en trois dimensions, permet aux bio-ingénieurs de créer des pièces de rechange artificielles sur mesure. En utilisant des modèles virtuels des parties du corps d’un patient à partir d’une tomographie par ordinateur ou d’une analyse d’imagerie par résonance magnétique, les chirurgien·ne·s peuvent fournir des implants qui correspondent à l’original. Un ménisque de remplacement avec le nouvel hydrogel a pu être imprimé par l'équipe à bas prix en seulement un jour. Ces implants nouvelle génération devraient, à terme, permettre de reconstituer intégralement une articulation abîmée.

En savoir plus

Un hydrogel analogue au cartilage pour des implants de genou imprimables en 3D, sur InfoHightech

La bio-impression, sur Sciences en ligne

Imprimer de la peau artificielle, sur Sciences en ligne

Réparer le cartilage, un dossier de l'INSERM

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email
Entrées associées