S'inscrire identifiants oubliés ?

Vers un nouvel outil de génie génétique

Que sont les ARN circulaires ?

L'ARN, acide ribonucléique constitué principalement d'un seul brin de nucléotide, est une molécule non codante ou participant à l'expression du

Observation directe d'une exoplanète

L'instrument Sphère et ses techniques de détection

Comment détecter les exoplanètes ? L'entreprise est difficile puisque les planètes n'émettent pas de lumière par elles-mêmes, elles réfléchissent ...

La microfluidique pour réduire la pollution

La physique de la microfluidique

La microfluidique, science des fluides au niveau du micromètre, est apparue au début des années 2000. Les phénomènes mettant en jeu les fluides existent partout dans la nature, ...

L'accélération de l'expansion de l'Univers

Le modèle cosmologique à l'épreuve

Une des énigmes majeures de l'astrophysique est de comprendre l'accélération de l'expansion de l'Univers. Afin de caractériser la nature de l'énergie ...

Un tamis moléculaire plus performant et vert

La purification du gaz naturel

Le gaz naturel extrait du sol a besoin que l'on élimine l'eau et le dioxyde de carbone qu'il contient, afin que seul le

Dévier les astéroïdes géocroiseurs

Quels astéroïdes nous menacent ?

Les astéroïdes sont des corps rocheux errant dans l'espace, d'un diamètre compris entre dix mètres et mille kilomètres. Plusieurs millions d'entre eux gravitent dans le

Radiographier les volcans grâce aux muons

Flux de muons cosmiques

Dans le modèle standard de la physique des particules, les muons sont des particules élémentaires chargées parfois appelées « électrons lourds ». Produits par la collision entre une

Technologies de l'aérospatial

Des satellites plus petits et plus nombreux

L'arrivée de nouveaux entrants dans l'industrie spatiale et la perspective de nombreuses mises en orbite liées aux constellations de satellites stimule l'innovation et la recherche d'une baisse des coûts de lancement. Ces constellations visent à assurer une couverture Internet à toute la planète, en particulier pour les trois milliards de personnes qui n'y sont pas encore raccordées dans les pays émergents. C'est le cas des neuf cents satellites de la société Oneweb, construits par Airbus et prévus pour être lancés en 2018 en orbite basse.

La production en série s'accompagne de la tendance à rapetisser les satellites, notamment avec l'exemple des nanosatellites, qui mesurent autour d'une dizaine de centimètres cubes. Le projet QB50 consiste ainsi à mettre cinquante nanosatellites en orbite après de la station spatiale internationale, à 415 kilomètres d'altitude. Élaborés par des université, ces satellites permettent aux élèves de se former à l'ingénierie spatiale et mettent à l'épreuve de nouvelles technologies pour la communauté scientifique et industrielle.

L'une des pistes de cette recherche d'économies a été initié par SpaceX aux États-Unis, avec le développement de lanceurs réutilisables, c'est-à-dire de fusées dont certains étages pourraient revenir sur Terre une fois leur mission accomplie. Dans le cas de SpaceX, après avoir atterri sur une plate-forme autonome sur le sol ou en mer, les fusées pourront être rechargées et réutilisées pour de nouveaux décollages. Ces sujets intéressent le CNES et l'ONERA pour le successeur d'Ariane 6. Outre ce lanceur lourd, utilisé pour placer en orbite géostationnaire des satellites de plusieurs tonnes, une autre voie est le lancement aéroporté, qui vise des charges utiles de quelques centaines de kilogrammes.

De nouvelles énergies pour les satellites

Une autre tendance du secteur spatial est le passage de la propulsion chimique à la propulsion électrique, avec des recherches en cours pour miniaturiser les propulsions électriques actuelles. Les moteurs électriques ont donc longtemps été cantonnés au maintien à poste des satellites, sur leur orbite, mais ils ont également trouvé leur application pour la mise à poste. Après sa séparation d'avec le lanceur, en effet, un satellite doit passer par une orbite de transfert qui lui permet de rejoindre l'orbite géostationnaire, avec ses propres moyens de propulsion. En utilisant l'énergie produite par les panneaux solaires du satellite, la propulsion électrique aboutit à un gain de poids en faisant l'économie de lourds réservoirs de carburant. L'inconvénient lié à la propulsion électrique réside dans l'allongement de la durée de mise à poste.

C'est pourquoi il restera certainement une place pour la propulsion chimique. Le CNES (Centre national d'études spatiales), se penche ainsi avec l'Office national d'études et de recherches aérospatiale (ONERA) sur le développement d'un monergol vert pour la propulsion satellitaire. La recherche sur ce nouveau composé ouvre une alternative prometteuse à l'ergol utilisé actuellement, l'hydrazine, dont la toxicité lui fait risquer d'être rapidement bannie de l'espace. Le CNRS et l'ONERA, travaillent à synthétiser cette nouvelle molécule, avec l'enjeu de choisir des matériaux qui résisteront aux hautes températures. L'objectif est de développer ensuite un moteur et de montrant que la propulsion fournit une poussée conséquente, ce qui permettra d'envisager un développement de la technologie et de proposer par la suite un démonstrateur.

L'imagerie satellitaire au service de l'environnement

En plus de l'internet satellitaire et de l'étude directe de l'atmosphère, les satellites permettent l'observation de notre planète depuis l'espace, le meilleur point de vue permettant de comprendre les changements complexes qui l'affectent. Par exemple, les satellites de la série Sentinel, du programme Copernicus, fournissent des informations sur le sol, les océans, l'atmosphère, l'environnement, la sécurité et le changement climatique. En plus d'études scientifiques sur le long terme, les satellites participant à Charte internationale « Espace et catastrophes majeures » peuvent traiter des situations d'urgence comme une éruption volcanique, un feux de forêt ou une catastrophe industrielle, en fournissant rapidement des images et des cartes.

L'imagerie hyper-spectrale peut être utilisée sur des plate-formes terrestres, spatiales ou aéroportées. Elle aide à détecter des objets dans des images grâce à leurs propriétés spectrales, ou à analyser la composition et l'état chimique de matériaux de surface, y compris l'état hydrique des végétaux. C'est le cas du démonstrateur technologique aéroporté Sysiphe de l'ONERA, qui peut acquérir des images d'une résolution de 50 centimètres dans plus de 600 bandes spectrales, allant du visible à l’infrarouge lointain. De telles technologies permettent d'étudier la biodiversité végétale, par exemple pour mettre en place à l'échelle mondiale un véritable bilan de la biodiversité, ou de caractériser les fonds marins en bord de côte.

Croiser les données permet de faire d'autres types de déductions. L'Institut de recherche technologique Saint-Exupéry présente au Salon du Bourget un « Google Earth intelligent ». Les systèmes d'observation développés combinent les bases de données et l'intelligence artificielle, en dotant les satellites d'un système d'apprentissage et d'intelligence collective qui leur permettra d'acquérir jusqu'à 30% d'images supplémentaires et d'améliorer la réactivité aux requêtes humaines, de 1 heure aujourd'hui à 5 minutes. Il s'agit d'anticiper la vague de données qui sera issue de la mise en service, dans les années à venir, de milliers de satellites formant des constellations en orbite basse.

En savoir plus

SpaceX réussit l'atterrissage de son lanceur, sur Sciences en ligne

Les satellites SPOT face aux catastrophes, sur Sciences en ligne

Ariane 6 : la riposte européenne, sur Sciences en ligne

Sentinel-2B, sur Sciences en ligne

L'évolution énergétique des aéronefs, sur Explorathèque

Féminisons les métiers de l’aéronautique, sur Explorathèque

X-CubeSat, un projet pour promouvoir le spatial, sur Explorathèque

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Le plongeon final de Cassini
En orbite depuis 2004 autour de Saturne, la sonde Cassini effectue une lente descente en direction de sa surface avant de se désintégrer en septembre 2017.

Une mission riche en enseignements

Afin de mieux connaître Saturne et ses satellites, la sonde spatiale Cassini a quitté la Terre en octobre 1997. Parvenue à destination en 2004, elle s'est mise en orbite autour de la planète gazeuse, dont elle a étudié l'atmosphère, la magnétosphère, les anneaux et les satellites. Quelques mois après, elle a libéré la sonde Huygens, qui est descendue sur Titan en fournissant des informations sur l'atmosphère et le sol de la plus grosse des lunes de Saturne.

En treize ans, la sonde Cassini a fourni de nombreux résultats scientifiques, tels que la découverte des geysers d’Encelade, l'identification de plus de soixante lunes – y compris à l’intérieur des anneaux – ou l'observation d'un vortex à six tourbillons situé au pôle nord de la planète. Cassini devait clore son voyage en 2008, mais, devant ces succès, la mission a été prolongée.

Dans les nuages de Saturne

Le 22 avril 2017, Cassini a effectué son cent vingt-septième et dernier survol rapproché de Titan, subissant une accélération qui a amorcé la manœuvre suivante. Le 26 avril, en effet, la sonde a effectué à une vitesse de cent vingt-quatre mille kilomètres par heure un plongeon entre Saturne et ses anneaux, s’enfonçant dans l’épaisse enveloppe gazeuse de la planète. Dans cet espace encore inexploré, la grande antenne radio de la sonde a été pointée vers l’avant en guise de bouclier face à d'éventuelles collisions avec des poussières, ce qui l'a empêchée de communiquer avec la Nasa durant ce laps de temps.

Lorsque Cassini a repris contact avec la Terre, elle a transmis les cent seize images collectées lors du survol, des images brutes de la planète prises à une distance de seulement trois mille kilomètres. C’est la première fois qu’un engin spatial s’aventure si près de la planète gazeuse. Le deuxième des vingt-deux survols rapprochés de Saturne a eu lieu le 2 mai. La sonde passera à deux mille kilomètres de la surface de référence de Saturne, avant de se désintégrer sur Saturne en septembre 2017, soit un mois pile avant ses vingt ans.

Le grand final

Choisir la désintégration dans la haute atmosphère de Saturne comme fin de mission permet d'éviter de polluer Encelade et Titan, deux lunes de Saturne qui pourraient contenir de l’eau liquide sous leur surface gelée. En plus de cette démarche de protection planétaire, cette étape final permettra au vaisseau de faire des mesures scientifiques qui auraient autrement été impossibles.

Les mesures du champ de gravité autour de la planète renseigneront sur sa structure interne, tandis que les mesures de la masse des anneaux permettront de déduire leur âge. Dans les deux cas, les résultats obtenus grâce à la sonde seront confrontés aux modèles établis par les astrophysicien·ne·s, de manière à les affiner, les valider ou les remettre en question. Enfin, mesurer le champ magnétique de Saturne conduira à calculer plus précisément la rotation de la planète.

En savoir plus

Cassini-Huygens, sur le site du CNES

L'exploration de Saturne, sur le site du CNES

Juno explore Jupiter, sur Sciences en ligne

Une sonde à l'assaut d'un astéroïde, sur Sciences en ligne

New Horizons lancée vers Pluton et ses lunes, sur Sciences en ligne

Cassini : ultime ballet cosmique pour le sondeur des anneaux, entretien réalisé par le CNES

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email
Entrées associées