S'inscrire identifiants oubliés ?

Bioacoustique et applications

Cat CC BY 2.0 via Wikimedia Commons

Le cri d'alarme des ailes

En 1871, Charles Darwin signalait l’existence de signaux non vocaux chez certains oiseaux, produits par leurs plumes, lors de leurs parades amoureuses. Des chercheurs de l’université nationale d’Australie ...

Du plastique numérique

Des chercheurs ont réussi à inscrire et lire plusieurs octets d'information stockés sur des polymères synthétiques. C'est-à-dire à une échelle 100 fois plus petite que celle des disques durs actuels.

La piste des plastiques numériques

Cela ...

Marie Curie (1867-1934)

Une scientifique d'exception

Née en Pologne à Varsovie en 1867, Marie Curie a mené toute sa carrière scientifique en France. Après de brillantes études en physique et en mathématiques, à la Sorbonne, éprise de "science pure", elle se lance dans ...

La foudre et les neutrons

(C) Thomas Bresson - Eclairs, CC BY 2.0

On sait depuis près de soixante ans que sous l’impact des « rayons cosmiques » - essentiellement des protons de haute énergie dont l’origine reste inconnue - les noyaux des atomes percutés à haute altitude éclatent en ...

Le délai de Newton-Wigner

(C) Wikimedia

Une avancée récente devrait permettre une meilleure maîtrise de la transmission de l’information par fibre optique

Un peu de réflexion
Dans une fibre ...

Prix Nobel de chimie 2017

© Martin Högbom/The Royal Swedish Academy of Sciences

Le prix Nobel de Chimie 2017 a été attribué à trois scientifiques pour leurs travaux permettant l'avènement de la cryo-microscopie électronique. Cette technique d'imagerie consiste à geler les molécules ...

Ondes gravitationnelles : du nouveau

Les ondes gravitationnelles et la Relativité générale 

Albert Einstein a révolutionné la physique moderne, d'abord en 1905 avec la théorie de la Relativité restreinte, puis en 1915 avec la théorie de la Relativité Générale. Cette dernière ...

Tchouri ou l'âge des comètes

La mission Rosetta de l'ESA a montré que la comète « Tchouri » (67P Churyumov-Gerasimenko), sur laquelle l'atterrisseur de la sonde a fini par s'écraser, est composée à près de 40 % de molécules organiques. D'après les travaux de Jean-Loup Bertaux, du Laboratoire atmosphères, milieux, observations spatiales (CNRS/UPMC/Univ. Versailles–Saint-Quentin-en-Yvelines), et Rosine Lallement, du laboratoire Galaxies, étoiles, physique et instrumentation (Observatoire de Paris/CNRS/Université Paris Diderot), ces molécules organiques auraient été formées dans le milieu interstellaire, avant la formation du système solaire.

En effet, l’on sait grâce à l’étude de la lumière des étoiles, et notamment des bandes diffuses interstellaires (« Diffuse Interstellar Bands », DIB), que des molécules organiques complexes sont présentes en quantité dans le milieu interstellaire. Dans les nuages interstellaires très denses, et notamment ceux dans lesquels une étoile va se former, les DIB ont tendance à diminuer parce que, d’après l’hypothèse émise par les deux chercheurs, les molécules organiques s’agglutinent et ne peuvent plus absorber autant de lumière. Le processus de formation des comètes, par agglutination non violente de petits grains de matières, aurait permis à ces molécules préexistantes au système solaire d’être préservées et identifiées 4,6 milliards d’années plus tard au sein de Tchouri.

Pour connaître la nature exacte de cette mystérieuse matière interstellaire, il faudra mettre sur pied une mission spatiale de collecte d’échantillons destinés à revenir sur Terre pour être analysés en laboratoire. En tout cas, si la matière organique des comètes provient bien du milieu interstellaire et qu’elle a joué un rôle dans l’apparition de la vie dur terre, rien n’interdit de penser qu’il en est de même ailleurs dans l’univers.

publié le 25 septembre 2017

En savoir plus

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Vers des réseaux de synapses artificiels
Une synapse électronique capable d'apprentissage a été créée, avec en vue la création de systèmes tels que des caméras économes en énergie.

La mémoire et la synapse

Dans le cerveau, les informations sont transmises par des signaux électriques véhiculés par les neurones. Ces cellules sont connectées entre elles grâce à des synapses, dont les caractéristiques sont modulées en fonction des impulsions qu'elles reçoivent. Ainsi, une stimulation régulière provoque un renforcement des connexions synaptiques dans le temps. Ces modifications moléculaires sont appelées potentialisations à long terme.

Dans l'hippocampe, siège de la mémoire, cette capacité de la synapse à adapter sa résistance participe à la capacité d'apprentissage des êtres vivants. Les neurones de cette zone, très plastiques, renforcent les connexions qui reçoivent des influx nerveux. Cette augmentation de l'efficacité peut durer de plusieurs heures à plusieurs semaines. Dans une démarche de biomimétisme, l'électronique peut reprendre les principes de fonctionnement du vivant pour créer des synapses artificielles.

Le memristor, synapse artificielle

S'inspirant de ce mécanisme, une équipe de scientifiques a créé une synapse artificielle sur une puce électronique, le flux d'électrons jouant le rôle des neurotransmetteurs. Ils ont appliqué le principe du memristor, dont la force de résistance varie en fonction du courant qui le traverse et imite donc le fonctionnement de son équivalent biologique. Le nanocomposant électronique, formé d'une fine couche ferroélectrique prise en sandwich entre deux électrodes, garde en mémoire les tensions électriques qui lui ont été appliquées.

Les scientifiques ont également développé un modèle physique qui explicite cette capacité d'apprentissage autonome et prédit son fonctionnement. Ces travaux ouvrent la voie à la création d'un réseau de synapses moins énergivores que ceux utilisés actuellement dans certains algorithmes de reconnaissance d'images. De plus, l'étude de ces modèles va permettre de créer des architectures électroniques de plus en plus complexes, comme des ensembles de neurones artificiels interconnectés par ces memristors.

Des systèmes d'apprentissage bio-inspirés

De tels réseaux pourraient révolutionner l'apprentissage profond des machines, le deep learning, en devenant l'une des briques d'un futur cerveau artificiel qui répliquerait les capacités d'un cerveau du monde vivant. Ainsi, après avoir étudié ce comportement dynamique à l'échelle d'un memristor, les chercheur·euse·s ont simulé l'apprentissage non-supervisé d'un réseau artificiel composé de quarante-cinq memristors pour la reconnaissance de formes simples.

Ces travaux sont à la base d'un nouveau type de caméra destiné à la reconnaissance de formes en temps réel, qui n'active ses pixels que si la scène présente dans l'angle de vision est modifiée. Les architectures électroniques nouvelles seraient plus efficaces dans les tâches d'apprentissage, non pour remplacer totalement l'architecture traditionnelle des micro-processeurs mais pour les compléter. Dans le cadre du projet européen ULPEC H2020 visant à concevoir une caméra bio-inspirée, les scientifiques du CNRS envisagent de traiter l'information reçue par un réseau de neurones d'environ mille memristors.

En savoir plus

La synapse, sur Le cerveau à tous les niveaux

Fonctionnement d'une synapse, sur Sciences en ligne

Quatre questions sur le cerveau, sur Sciences en ligne

Des machines qui parlent entre elles ?, sur Sciences en ligne

Des synapses électroniques capables d'apprendre : vers un cerveau artificiel ?, communiqué de presse du CNRS

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email