S'inscrire identifiants oubliés ?

Du ribose dans les météorites

Le ribose, sucre vital

L’ADN - ou acide désoxyribonucléique - est formé en particulier d’un sucre, le désoxyribose, lui-même un dérivé du ribose (C5H10O5). Plus précisément, dans le désoxyribose (C5H10O4) un groupement hydroxyle (-OH) du ribose ...

Un nouveau comportement des électrons

Cooper pairs - Tem5psu CC BY-SA
Isolants, conducteurs et semi-conducteurs

Le comportement d’un solide cristallin relativement au courant électrique, peut être celui d’un isolant, d’un semi-conducteur, d’un métal ou d’un supraconducteur. Dans les isolants, ...

Interférences et biomolécules

CC BY-SA 4.0 Alexandre Gondran
Les expériences d’interférences mettant en jeu des molécules de plus en plus grosses et lourdes révèlent que les lois de la mécanique quantique sont applicables bien au-delà du monde de « l’infiniment petit » ...

Anomalie de dilatation thermique

By Simon Mer - Own work, CC BY-SA 4.0
Généralement, les matériaux se dilatent lorsqu’ils sont chauffés. La raison en est qu’une élévation de température correspond à une augmentation de l’agitation des atomes, or cette agitation n’est pas symétrique. ...

Nucléosythèse et étoiles à neutrons

(C) NASA - Nébuleuse du Crabe, marquée par la présence d'une étoile à neutron
Mis à part quelques éléments légers comme l’hydrogène, l’hélium, le lithium… produits peu après le big bang, tous les noyaux atomiques naturels ...

Des réfrigérateurs à torsion

Impératifs environnementaux

Près de 20% de l’énergie électrique produite dans le monde est consommée par les climatiseurs, réfrigérateurs et congélateurs. De plus, ces machines frigorifiques utilisent des fluides frigorigènes dont la plupart sont des gaz ...

Les batteries au lithium pour un Nobel

De la petite électronique à la voiture électrique, la pile lithium-ion - non rechargeable - et surtout l'accumulateur - rechargeable - ont envahi notre quotidien. Sans cette technologie lithium-ion, téléphones mobiles, tablettes et autres appareils nomades n’existeraient pas ou seraient ...

Du champagne supersonique

Physique du bouchon de champagne

Tout le monde le sait, lorsqu’une bouteille de champagne est débouchée, le bouchon est souvent violemment propulsé… ce qui peut être dangereux s’il percute l’œil. La raison pour laquelle le bouchon saute à environ 50 km/h vient du fait qu’une bouteille de champagne contient 8,8 g de dioxyde de carbone (CO2) soit 0,2 mole, dont l’essentiel est dissout dans le liquide, le reste se trouvant sous pression dans le goulot, en équilibre avec le CO2 dissout. A 20°C, la pression dans le goulot vaut 7 fois la pression atmosphérique, tandis qu’à 30°C, elle lui est 10 fois supérieure. Le bouchon est donc plus fortement poussé vers l’extérieur que l’air ambiant à la pression atmosphérique le pousse vers l’intérieur. Aussitôt après l’expulsion du bouchon, un « nuage » de condensation apparaît au-dessus du goulot. En effet, lors de son expansion, le CO2 pousse le bouchon vers l’extérieur et lutte contre la pression atmosphérique, si bien que l’énergie qu’il dépense pour effectuer ce travail se traduit par une chute de température, le gaz n’ayant pas le temps d’équilibrer sa température avec le milieu ambiant par échange de chaleur : la détente s’effectue de manière adiabatique (sans échange de chaleur). La chute de température provoque la condensation de la vapeur d’eau en liquide et même solide avec apparition de fines gouttelettes et de cristaux. La température après détente est plus basse lorsque la pression initiale est plus importante, c’est-à-dire lorsque la température initiale est plus élevée. Comme la température peut chuter à -90°C, le CO2 peut lui-même geler.

Du nouveau !

C’est en étudiant attentivement ce phénomène que les physiciens français Gérard Liger-Belair, Daniel Cordier et Robert Georges du CNRS viennent de découvrir une chose surprenante qui a faut l’objet d’une publication (Liger-Belair et al. Sci. Adv. 2019; 5 : eaav5528 20 Septembre 2019) : l’expansion du CO2 s’effectue de manière supersonique (c'est-à-dire plus rapide que 340 m/s) avec formation de ce qui s’appelle un « disque de Mach »… qu’il ne faut confondre avec un « cône de Mach », lequel apparaît lorsqu’un objet - comme un avion par exemple ou une balle - avance à vitesse supersonique. Les disques de Mach sont des ondes de choc bien visibles dans les jets des réacteurs d’avions supersoniques. Le jet de plusieurs mètres de long comporte des stries régulièrement espacées : ce sont les « disques de Mach » appelés aussi en anglais « shock diamonds ». À l’aide d’une caméra ultrarapide, les chercheurs ont pu photographier l’apparition d’un disque de Mach et son évolution au cours du temps. Comme quoi, il y a encore de la physique à découvrir dans une simple bouteille de champagne.

 

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Vers des réseaux de synapses artificiels
Une synapse électronique capable d'apprentissage a été créée, avec en vue la création de systèmes tels que des caméras économes en énergie.

La mémoire et la synapse

Dans le cerveau, les informations sont transmises par des signaux électriques véhiculés par les neurones. Ces cellules sont connectées entre elles grâce à des synapses, dont les caractéristiques sont modulées en fonction des impulsions qu'elles reçoivent. Ainsi, une stimulation régulière provoque un renforcement des connexions synaptiques dans le temps. Ces modifications moléculaires sont appelées potentialisations à long terme.

Dans l'hippocampe, siège de la mémoire, cette capacité de la synapse à adapter sa résistance participe à la capacité d'apprentissage des êtres vivants. Les neurones de cette zone, très plastiques, renforcent les connexions qui reçoivent des influx nerveux. Cette augmentation de l'efficacité peut durer de plusieurs heures à plusieurs semaines. Dans une démarche de biomimétisme, l'électronique peut reprendre les principes de fonctionnement du vivant pour créer des synapses artificielles.

Le memristor, synapse artificielle

S'inspirant de ce mécanisme, une équipe de scientifiques a créé une synapse artificielle sur une puce électronique, le flux d'électrons jouant le rôle des neurotransmetteurs. Ils ont appliqué le principe du memristor, dont la force de résistance varie en fonction du courant qui le traverse et imite donc le fonctionnement de son équivalent biologique. Le nanocomposant électronique, formé d'une fine couche ferroélectrique prise en sandwich entre deux électrodes, garde en mémoire les tensions électriques qui lui ont été appliquées.

Les scientifiques ont également développé un modèle physique qui explicite cette capacité d'apprentissage autonome et prédit son fonctionnement. Ces travaux ouvrent la voie à la création d'un réseau de synapses moins énergivores que ceux utilisés actuellement dans certains algorithmes de reconnaissance d'images. De plus, l'étude de ces modèles va permettre de créer des architectures électroniques de plus en plus complexes, comme des ensembles de neurones artificiels interconnectés par ces memristors.

Des systèmes d'apprentissage bio-inspirés

De tels réseaux pourraient révolutionner l'apprentissage profond des machines, le deep learning, en devenant l'une des briques d'un futur cerveau artificiel qui répliquerait les capacités d'un cerveau du monde vivant. Ainsi, après avoir étudié ce comportement dynamique à l'échelle d'un memristor, les chercheur·euse·s ont simulé l'apprentissage non-supervisé d'un réseau artificiel composé de quarante-cinq memristors pour la reconnaissance de formes simples.

Ces travaux sont à la base d'un nouveau type de caméra destiné à la reconnaissance de formes en temps réel, qui n'active ses pixels que si la scène présente dans l'angle de vision est modifiée. Les architectures électroniques nouvelles seraient plus efficaces dans les tâches d'apprentissage, non pour remplacer totalement l'architecture traditionnelle des micro-processeurs mais pour les compléter. Dans le cadre du projet européen ULPEC H2020 visant à concevoir une caméra bio-inspirée, les scientifiques du CNRS envisagent de traiter l'information reçue par un réseau de neurones d'environ mille memristors.

En savoir plus

La synapse, sur Le cerveau à tous les niveaux

Fonctionnement d'une synapse, sur Sciences en ligne

Quatre questions sur le cerveau, sur Sciences en ligne

Des machines qui parlent entre elles ?, sur Sciences en ligne

Des synapses électroniques capables d'apprendre : vers un cerveau artificiel ?, communiqué de presse du CNRS

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email