S'inscrire identifiants oubliés ?

Physique de l’espresso

Une recette ancestrale

Dans les grandes lignes, depuis son invention en 1884, la préparation d’un espresso consiste à forcer de l’eau chaude à passer assez rapidement à travers du café moulu très fin. Plus précisément, la température de l’eau ...

Des panneaux solaires bifaces

Les panneaux solaires : du silicium « dopé »

Dans un panneau solaire, l’énergie lumineuse est convertie en courant électrique, grâce à l’effet photoélectrique où un photon arrache un électron à un atome. Pour cela, il faut ...

Les électrons peuvent s’écouler comme l’eau

Lorsque l’eau s’écoule dans un tuyau, ce sont les interactions entre ses molécules qui la freinent. A l’inverse, lorsque des électrons s’écoulent dans un fil conducteur, c’est avant tout le fil lui-même qui les freine. Une équipe de chercheurs britanniques et israéliens, ...

Les cristaux temporels

Réseaux cristallins associés à l'eau. by Psi?edelisto, based on version by Dbuckingham42 - Own work, CC BY-SA 4.0,

Cristal et brisure de symétrie 

Un cristal est un état de la matière dans lequel les atomes sont ordonnés selon une périodicité spatiale ...

Du ribose dans les météorites

Le ribose, sucre vital

L’ADN - ou acide désoxyribonucléique - est formé en particulier d’un sucre, le désoxyribose, lui-même un dérivé du ribose (C5H10O5). Plus précisément, dans le désoxyribose (C5H10O4) un groupement hydroxyle (-OH) du ribose ...

Un nouveau comportement des électrons

Cooper pairs - Tem5psu CC BY-SA
Isolants, conducteurs et semi-conducteurs

Le comportement d’un solide cristallin relativement au courant électrique, peut être celui d’un isolant, d’un semi-conducteur, d’un métal ou d’un supraconducteur. Dans les isolants, ...

Interférences et biomolécules

CC BY-SA 4.0 Alexandre Gondran
Les expériences d’interférences mettant en jeu des molécules de plus en plus grosses et lourdes révèlent que les lois de la mécanique quantique sont applicables bien au-delà du monde de « l’infiniment petit » ...

Anomalie de dilatation thermique

By Simon Mer - Own work, CC BY-SA 4.0
Généralement, les matériaux se dilatent lorsqu’ils sont chauffés. La raison en est qu’une élévation de température correspond à une augmentation de l’agitation des atomes, or cette agitation n’est pas symétrique. En effet, deux atomes liés au repos sont espacés d’une distance optimale d’un point de vue énergétique, et ont beaucoup plus de mal à se rapprocher très près, que de s’éloigner l’un de l’autre. Cela résulte du fait que la force répulsive croit extrêmement vite si l’on cherche à diminuer la longueur de liaison, alors que la force attractive croit très lentement lorsqu’on tente d’augmenter cette longueur. En somme, la liaison interatomique agit comme « ressort » qui se comprime plus difficilement qu’il ne s’étire. Par conséquent l’agitation thermique a plutôt tendance à augmenter les distances interatomiques, donc le volume.

Pourtant, il existe des exceptions, comme l’eau lorsqu’elle gèle et qui est d’ailleurs l’exemple le plus courant. Plus précisément, la densité maximale de l’eau se situe vers 4°C, ce qui signifie que le liquide voit son volume diminuer lorsque la température grimpe de 0°C à 4°C. Sur cette plage de température, l’eau possède un « coefficient de dilatation négatif ». Certains éléments du tableau périodique se comportent également de cette manière, leur congélation provoquant une diminution de leur densité, le solide flottant sur le liquide. C’est le cas du silicium, du bismuth, du gallium, du germanium, du plutonium et de l’antimoine. Il s’agit là d’exemples d’anomalie de dilatation ne concernant qu’une petite plage de température ou n’ayant lieu que lors du changement de phase liquide - solide. Mettons l’eau liquide et les changements de phase de côté et intéressons-nous à des solides cristallins.

Existe-t-il de tels matériaux ayant un coefficient de dilatation négatif ? La réponse est oui et cela est bien mystérieux. Un des exemples les plus étudiés est le tungstate de zirconium (ZrW2O8) qui exhibe cette anomalie entre -273°C et 777°C. Un autre est le trifluorure de scandium (ScF3) entre -263°C et 827°C. D’autres exemples sont également connus, comme certains silicates, cyanures, les nanotubes de carbone, la glace elle-même quand elle est refroidie à – 200°C… Les études récentes du trifluorure de scandium (ScF3) commencent à lever le voile sur le mystère du coefficient négatif des solides cristallins. La distance entre des atomes liés ne diminue pas, mais c’est l’agitation de la structure cristalline qui permet une réduction de volume comme sur le schéma ci-dessous. Il est fort probable que toutes les autres anomalies puissent s’expliquer selon ce même modèle.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Les protéines du tardigrade
Les qualités de résistance extrêmes du tardigrade ont permis de mettre en évidence les propriétés de préservation des protéines intrinsèquement désordonnées.

Publié le 27 avril 2017

Que sont les protéines intrinsèquement désordonnées (PID) ?

François-Xavier Theillet, chercheur à l'I2BC (Institut de biologie intégrative de la cellule, rattaché au CEA, au CNRS et à l'université Paris Sud) étudie ces PID et les agrégats qu'elles peuvent former dans le cadre d'études sur les maladies neurodégénératives.

« La plupart des protéines connues adoptent une structure stable, c'est-à-dire un repliement stable, comme une pelote de laine bien enroulée. Elles sont donc relativement compactes, avec une surface et une fonction bien déterminées. Les PID, elles, ressemblent à une pelote de laine déroulée, sans repliement stable, même si elles peuvent se structurer lorsqu'elles interagissent avec des partenaires. Elles sont dans des conformations relativement désordonnées, moins compactes, elles sont donc plus flexibles et leurs zones d'interaction sont plus variées.

Les PID sont souvent impliquées dans les interactions entre protéines au sein de la cellule, ce qui permet notamment la transmission des informations. Elles sont essentielles pour, par exemple, réguler la multiplication et la différenciation cellulaire. De manière moins spécifique, elles ont aussi la capacité de changer les propriétés physiques de leur environnement, comme on l'observe chez le tardigrade. »

L'étude du tardigrade

Les tardigrades sont des invertébrés, que l'on peut qualifier d'extrêmophiles car ils présentent de fortes capacités de résistance. Ils sont notamment capables de résister à une forte perte d'eau, la dessiccation, en entrant dans un état dit de cryptobiose. Une équipe de l'université de Caroline du Nord a montré qu'une telle capacité de résistance provenait des fameuses protéines intrinsèquement désordonnées.

Les scientifiques ont identifié les gènes codant pour ces protéines, surexprimés lorsque les tardigrades subissent une dessiccation progressive. En induisant la production de ces protéines dans une levure et une bactérie par une manipulation génétique, des organismes plus résistants à la dessiccation ont été obtenus. Cette expérience a mis en évidence le rôle de ces protéines dans la cryptobiose des tardigrades.

Une hypothèse est que, grâce à leur malléabilité, les protéines forment une matrice qui protège les molécules sensibles en son sein. Chez le tardigrade, cela s'accompagne sans doute d'autres mécanismes comme le ralentissement du métabolisme ou la réparation de l’ADN abîmé.

Des pistes de conservation

Les phénomènes physiques ne sont pas encore bien décrits, mais les pistes de recherche sont ouvertes. Ces protéines pourraient être utilisées pour lyophiliser des médicaments ou des vaccins. On pourrait les conserver longtemps et facilement, puis les réhydrater au moment voulu, par exemple au terme d'un transport entre deux laboratoires. Dans ce cas, des essais cliniques seraient nécessaires pour garantir l'innocuité de ces protéines.

D'autres protéines du tardigrade sont étudiées dans le monde, comme les Dsup (pour Damage suppressor) qui limitent les atteintes génétiques provoquées par les rayons X. De telles propriétés permettraient d'établir des radiothérapies ciblées, ou de manière plus générale de préserver autrement les matériaux biologiques.

En savoir plus

Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation, Molecular Cell

Le tardigrade, un animal capable de survivre dans l’espace, En quête de sciences

Tardigrade : ces super-pouvoirs dont vous ne verrez jamais la couleur, France Culture

Interactions, sur Sciences en ligne

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email
Actus associées