S'inscrire identifiants oubliés ?

Les batteries au lithium pour un Nobel

De la petite électronique à la voiture électrique, la pile lithium-ion - non rechargeable - et surtout l'accumulateur - rechargeable - ont envahi notre quotidien. Sans cette technologie lithium-ion, téléphones mobiles, tablettes et autres appareils nomades n’existeraient pas ou seraient ...

Du champagne supersonique

Physique du bouchon de champagne

Tout le monde le sait, lorsqu’une bouteille de champagne est débouchée, le bouchon est souvent violemment propulsé… ce qui peut être dangereux s’il percute l’œil. La raison pour laquelle le bouchon saute à environ 50 km/h vient ...

Le matériau le plus noir du monde

Si vous pensiez qu’obtenir un noir intense était chose facile, vous vous trompiez. Depuis de nombreuses années, artistes et scientifiques cherchent la formule du véritable noir, ou du moins à s'en approcher. Par noir véritable, entendez une surface qui ne renverrait aucun rayon lumineux. Actuellement, ...

Organes sur puce, vers un futur bionique ?

Imaginez une puce tenant dans la main qui renfermerait un micro-poumon ? Science fiction ? Fantasme de savant fou ? Absolument pas, il s'agit de choses bien réelles et déjà brevetées ! Apparus courant 2010, les organes sur puce ...

50 ans de Lune

© NASA, 1968

Apollo, conquête spatiale et apports scientifiques

"Un petit pas pour l'homme, mais un grand pas pour l'humanité", les mots de Neil Armstrong sont restés dans l'Histoire, comme l’empreinte de la chaussure de Buzz Aldrin restera sur la Lune ...

CRISPR-Cas9, une révolution et des dérives

Une modification aux effets secondaires indésirés

En novembre 2018, un scientifique chinois révélait au monde entier qu'il avait réussi à créer des bébés génétiquement modifiés. Cet apprenti Frankenstein a modifié in vitro un

Sommes-nous seuls dans l'univers ?

Un peu d'histoire

A l'aube de la civilisation, la vie extraterrestre est envisagée par le prisme des dieux et divinités. Les Incas pratiquent des sacrifices, et les Aztèques tracent de grandes figures au sol destinées ...

Une demi-vie qui dépasse l'âge de l'univers

Construit 1500 m sous le sol italien, le Laboratoire National de San Grasso (LNSG) accueille le détecteur XENON1T, résultat de la collaboration internationale de plus de 160 chercheurs venus d'Europe, des États-Unis et du Moyen Orient. Le 29 avril 2019, ils annonçaient l'observation de la désintégration du xénon 124.

A la recherche de la matière noire

Construit à partir de 2012, le détecteur XENON1T a commencé ses mesures dès 2016. Aujourd'hui, alors qu'il est démonté pour permettre la construction de son successeur, les chercheurs traitent encore les données qu'il a récoltées. Ce détecteur est assigné à la recherche directe et à l'observation de la matière noire. « Il y cinq à six fois plus de matière noire dans l’Univers que de matière ordinaire. L’estimation de la quantité de la matière noire se fait avec les modèles théoriques comme celui du Big Bang. Tous les modèles supposent la présence de matière noire » explique Dominique Thers, chef d'équipe du groupe XENON du laboratoire Subatech. Pourtant, elle n'a jamais été observée directement. On suppose qu'elle est composée de particules neutres et insensibles aux forces électromagnétiques car elle n'émet pas de lumière. « Les modèles théoriques les plus probables sont ceux qui décrivent la matière noire constituée de particules élémentaires lourdes et lentes, nouvelles et encore inconnues » ajoute le chercheur. « Les chercheurs tentent d’observer la matière noire depuis plus de deux générations déjà, sans succès. Elle interagit très faiblement avec la matière ordinaire, donc il faut construire des expériences de plus en plus grandes et de plus en plus silencieuses et sensibles pour pouvoir l'observer ».

Un détecteur ultra-sensible

Du fait de ces interactions très faibles, le détecteur doit également être le plus isolé possible des bruits. Il est donc enfoui sous terre pour limiter l'impact de la radioactivité et c'est le xénon qui est utilisé, un gaz noble qui est très peu réactif. Cela fait de lui le détecteur le plus sensible au monde.

Selon les modèles théoriques, la matière noire ne devrait que très rarement entrer en contact avec les atomes de xénon du détecteur. Celui-ci, cylindrique, mesure un mètre de long et contient près de 3500 kg de xénon liquide à -95°C. « Le détecteur est conçu comme un oignon : plus on va au coeur du détecteur plus l’appareil est fiable et efficace. Au centre se trouve une tonne de xénon, celle qui détecte la matière noire. Deux tonnes de xénon viennent ensuite blinder le détecteur pour l’isoler des bruits » nous apprend Julien Masbou enseignant chercheur au Laboratoire de Physique Subatomique et des Technologies Associées. Lorsqu'un atome de xénon rencontre une particule de matière noire, celle-ci transfère de l'énergie au noyau de l'atome qui excite à son tour d'autres atomes de xénon. Ce mécanisme produit in fine des courants électriques et aussi l'émission de rayonnement UV. Ces rayonnements sont ensuite détectés par des photodétecteurs placés aux extrémités de la zone active.

Des mesures complexes

XENON1T est aussi capable de mesurer la double capture électronique, permettant de calculer la désintégration du xénon 124. « La double capture électronique n’était pas le but de l’expérience, c’est une découverte due au hasard » commente Julien Masbou. Ce phénomène est très difficile à détecter car il st masqué par la radioactivité ambiante mais aussi parce que « la désintégration du xénon 124 est un processus très faible en amplitude et en intensité, et donc difficilement observable » explique Dominique Thers. Le principe est le suivant : deux protons du noyau de xénon capturent simultanément deux électrons de la couche électronique la plus interne. Ils se transforment en neutrons et deux neutrinos sont émis. Les électrons de la couche prélevée se réarrangent. Le processus émet des rayons X, détectables. C'est grâce à ce mécanisme que les chercheurs ont pu déterminer la demi-vie du xénon qui est de 1,8.10²² ans, soit mille milliard de fois plus grande que celle de notre univers.

La détection de cette double capture électronique confirme la puissance de ce détecteur. La matière noire n'a pas encore été détectée, mais les scientifiques sont optimistes quand à l'observation directe de celle-ci, car le détecteur a fait ses preuves. « Nous n’avons pas observé la matière noire mais la découverte de la double capture électronique montre bien que notre instrument fonctionne » se félicite Julien Masbou. Selon Dominique Thers, « on observe déjà indirectement la matière noire grâce aux courbes de rotation des étoiles dans les galaxies, aux microlentilles gravitationnelles ou aux rayonnements cosmologiques. Il y a beaucoup d’observations à différentes échelles qui justifient la présence de matière noire ». Grâce aux informations fournies par le détecteur XENON1T, les chercheurs pourront également étudier plus en détail la nature des neutrinos.

Ils traqueront les doubles captures électronique sans neutrino pour mieux les étudier. Une autre phase de recherche, XENONnT, verra bientôt le jour après la mise à niveau actuelle de l'équipement. « XENONnT sera plus sensible, avec un total de cinq tonnes de xénon contre trois pour XENON1T, c’est la plus importante expérience utilisant du xénon pour détecter de la matière noire » selon Julien Masbou. Cela devrait permettre de gagner un ordre de grandeur et augmenter les chances de détecter de la matière noire, cette « quête de l’extrême » conclut Dominique Thers.

 

En savoir plus :

L'article original :https://www.nature.com/articles/s41586-019-1124-4

Le site de SubaTech : http://www-subatech.in2p3.fr/fr/recherche/nucleaire-et-sante/xenon/recherche/fondamentales/xenon1t

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Les protéines du tardigrade
Les qualités de résistance extrêmes du tardigrade ont permis de mettre en évidence les propriétés de préservation des protéines intrinsèquement désordonnées.

Publié le 27 avril 2017

Que sont les protéines intrinsèquement désordonnées (PID) ?

François-Xavier Theillet, chercheur à l'I2BC (Institut de biologie intégrative de la cellule, rattaché au CEA, au CNRS et à l'université Paris Sud) étudie ces PID et les agrégats qu'elles peuvent former dans le cadre d'études sur les maladies neurodégénératives.

« La plupart des protéines connues adoptent une structure stable, c'est-à-dire un repliement stable, comme une pelote de laine bien enroulée. Elles sont donc relativement compactes, avec une surface et une fonction bien déterminées. Les PID, elles, ressemblent à une pelote de laine déroulée, sans repliement stable, même si elles peuvent se structurer lorsqu'elles interagissent avec des partenaires. Elles sont dans des conformations relativement désordonnées, moins compactes, elles sont donc plus flexibles et leurs zones d'interaction sont plus variées.

Les PID sont souvent impliquées dans les interactions entre protéines au sein de la cellule, ce qui permet notamment la transmission des informations. Elles sont essentielles pour, par exemple, réguler la multiplication et la différenciation cellulaire. De manière moins spécifique, elles ont aussi la capacité de changer les propriétés physiques de leur environnement, comme on l'observe chez le tardigrade. »

L'étude du tardigrade

Les tardigrades sont des invertébrés, que l'on peut qualifier d'extrêmophiles car ils présentent de fortes capacités de résistance. Ils sont notamment capables de résister à une forte perte d'eau, la dessiccation, en entrant dans un état dit de cryptobiose. Une équipe de l'université de Caroline du Nord a montré qu'une telle capacité de résistance provenait des fameuses protéines intrinsèquement désordonnées.

Les scientifiques ont identifié les gènes codant pour ces protéines, surexprimés lorsque les tardigrades subissent une dessiccation progressive. En induisant la production de ces protéines dans une levure et une bactérie par une manipulation génétique, des organismes plus résistants à la dessiccation ont été obtenus. Cette expérience a mis en évidence le rôle de ces protéines dans la cryptobiose des tardigrades.

Une hypothèse est que, grâce à leur malléabilité, les protéines forment une matrice qui protège les molécules sensibles en son sein. Chez le tardigrade, cela s'accompagne sans doute d'autres mécanismes comme le ralentissement du métabolisme ou la réparation de l’ADN abîmé.

Des pistes de conservation

Les phénomènes physiques ne sont pas encore bien décrits, mais les pistes de recherche sont ouvertes. Ces protéines pourraient être utilisées pour lyophiliser des médicaments ou des vaccins. On pourrait les conserver longtemps et facilement, puis les réhydrater au moment voulu, par exemple au terme d'un transport entre deux laboratoires. Dans ce cas, des essais cliniques seraient nécessaires pour garantir l'innocuité de ces protéines.

D'autres protéines du tardigrade sont étudiées dans le monde, comme les Dsup (pour Damage suppressor) qui limitent les atteintes génétiques provoquées par les rayons X. De telles propriétés permettraient d'établir des radiothérapies ciblées, ou de manière plus générale de préserver autrement les matériaux biologiques.

En savoir plus

Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation, Molecular Cell

Le tardigrade, un animal capable de survivre dans l’espace, En quête de sciences

Tardigrade : ces super-pouvoirs dont vous ne verrez jamais la couleur, France Culture

Interactions, sur Sciences en ligne

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email
Actus associées