S'inscrire identifiants oubliés ?

Transport de l’énergie électrique

La quasi-totalité de l’énergie électrique dans le monde est produite puis transportée vers les villes et les centres industriels sous forme de courant

Atmosphère de la Terre primitive

Auteur C Eeckhout.

L’atmosphère primitive et son évolution

Au Précambrien, l'atmosphère primitive de notre planète était dépourvue d’oxygène et riche en dioxyde de carbone (CO2) et en méthane, ainsi ...

En route vers le Soleil

Credits: NASA/Johns Hopkins APL/Steve Gribben 

Un voyage d'enfer

Baptisée en hommage à l'astrophysicien américain Eugene Parker, qui a posé les bases de la théorie du vent solaire, la mission Parker Solar devrait contribuer à percer les mystères ...

Révolution hydrogène

L'hydrogène carburant :

L'hydrogène (ou dihydrogène - H2) est considéré comme étant un carburant propre puisque sa combustion n'émet ni CO2 ni particules fines, mais uniquement ...

Le verre se met au vert

Production du verre - Domaine public

Le verre, un matériau traditionnel innovant

La production du verre est une activité millénaire, d’abord artisanale, puis industrielle. S’il existe différents types de verres qui se distinguent par leurs compositions, leurs ...

Des nano-balances pour peser des virus

Mesurer le nano monde

Un nano-objet a par définition des dimensions de l'ordre du nanomètre soit (10-9 m). À titre de comparaison, le diamètre d'un cheveu mesure entre 50 et 100 micromètres (10-6 m).

Les nano-objets comprennent entre autres les ...

Nouveau succès pour la mission New Horizons

Pluton et Charon
Credit: NASA/JHUAPL/SwRI

Une première historique

Lancée le 19 janvier 2006, New Horizons est une mission spatiale dédiée à l'observation de Pluton et de la ceinture de Kuiper, cette région du système solaire en forme d'anneau ...

Des crustacés pour produire du biocarburant?

Crustacés xylophages

Les Limnories lignorum ou Limnories du bois sont de petits invertébrés xylophages capables d'ingérer le bois immergé dans l'eau de mer. Ils jouent ainsi un rôle important dans l'écosystème littoral en participant au recyclage de la cellulose et de la lignine, le composant du bois qui lui donne sa rigidité. Ils causent également des dégâts en s'attaquant aux coques des bateaux, aux pontons et autres constructions en bois.

Jusqu'à présent, la faculté des limnories à décomposer la lignine restait un mystère.
En étudiant l'intestin des limnories, une équipe de scientifiques a découvert que l'hémocyanine, protéine responsable de la couleur bleue du sang de ces invertébrés, joue un rôle primordial dans leur capacité à digérer les sucres du bois.

L'hémocyanine est une protéine connue pour son rôle de transporteur de l'oxygène chez certains invertébrés, de la même manière que l'hémoglobine chez les vertébrés.
Alors que l'hémoglobine lie l'oxygène grâce aux atomes de fer de sa structure, qui donnent au sang sa couleur rouge, l'hémocyanine fait de même avec des atomes de cuivre, à l'origine d'une couleur bleue. Les limnories exploitent les propriétés oxydantes de l'hémocyanine pour attaquer les liaisons au sein de la lignine.
 

Une nouvelle piste pour les énergies renouvelables ?

Le Professeur Simon McQueen-Mason, du département de biologie de l'université de York, qui conduit ces recherches, explique que : « Les limnories sont les seuls animaux pourvus d'un système digestif stérile connus à ce jour. Cela rend leur méthode de digestion du bois plus facile à étudier que celle d'autres créatures xylophages comme les termites, chez lesquelles la digestion est assurée par des milliers de microorganismes intestinaux ». 
Il ajoute : « Nous avons découvert que les limnories déchiquètent le bois en le mâchant en de minuscules morceaux avant de se servir de l'hémocyanine pour s'attaquer à la structure de la lignine. »

Les recherches menées par des équipes des universités de York, Portsmouth, Cambridge et Sao Paulo ont révélé que traiter le bois avec l'hémocyanine permet de doubler la quantité de sucre libérée, sans avoir recours à des traitements thermochimiques coûteux et énergivores.

La troisième génération de biocarburants, dont la recherche se focalise pour l'instant sur les microalgues, pourrait bien accueillir ce candidat innatendu. Cette découverte pourrait permettre, à terme, de réduire l'énergie nécessaire pour transformer le bois en biocarburant.

Publié le 14/12/2018

En savoir plus :

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Imprimer de la peau artificielle
L'impression 3D de tissus humains grâce au laser se développe, avec à la clé des greffes de peau et une alternative à l'exploitation animale dans les essais en cosmétiques.

Réaliser des bio-impressions de peau

La peau est une structure complexe, organisée en trois couches de tissus (épiderme, derme, hypoderme). Il s'agit du plus grand organe du corps humain, puisqu'elle représente environ 16% de son poids total. Sa fonction principale est de former une barrière de protection envers le milieu extérieur, qu'il s'agisse des agressions thermiques et mécaniques ou des contaminants qui y sont présents.

L'impression 3D, qui permet la création d'un objet tridimensionnel par l'empilement de couches, a ouvert de très nombreux champs d'expérimentation. Jean-Christophe Fricain, directeur de l'unité Bioingénierie Tissulaire de l'INSERM à Bordeaux, souligne la différence avec la bio-impression, où « il s'agit de la fabrication additive de matériel non plus inerte mais biologique. Il existe plusieurs technologies de bio-impression. On peut utiliser des seringues qui se déplacent grâce à un bras piloté par ordinateur, pour pousser un hydrogel contenant du matériel biologique. On peut mettre au point un système par jet d'encre, qui émet des gouttelettes comme les imprimantes classiques mais dépose là aussi un hydrogel relativement fluide. On peut encore utiliser l'énergie laser pour faire des transferts de goutte comme le fait l'entreprise Poietis, c'est-à-dire des transferts de matière vivante : on combine alors différents composants biologiques, comme les cellules ou la matrice extra-cellulaire, pour organiser des structures qui ressemblent au tissu vivant. »

Une collaboration entre une entreprise de Pessac et l'INSERM a en effet mené à la mise en point une machine capable de produire de la matière vivante grâce à de la lumière laser. Trois semaines sont nécessaires pour reproduire de la peau. L'imprimante dépose, couche par couche, des micro-gouttes contenant des cellules selon un modèle numérique inspirés de tissus existants. Grâce à sa très haute définition, de l'ordre de vingt microns soit la taille maximale d'une cellule, le laser peut reproduire la complexité des tissus avec une grande précision et assurer leur auto-organisation. De plus, il assure la viabilité des cellules à hauteur de plus de 95%.

Des applications en clinique, en pharmacologie et en cosmétique

« À l'échelle micrométrique, l'impression biologique permet d'étudier le comportement de certaines organisation cellulaires, pour une recherche plutôt fondamentale. À l'échelle millimétrique, représenter la partie fonctionnelle d'un organe donne des applications dans le domaine de la toxicologie et de l'étude des médicaments, puisqu'on peut imaginer par exemple la réalisation de micro-modèle tumoraux sur lesquels tester des chimiothérapies avant de l'appliquer aux individus. À l'échelle centimétrique, l'enjeu est plutôt de reproduire des organes. »

À cette échelle des organes et des tissus, les enjeux de la bio-impression dans le domaine médical sont souvent médiatisés, avec l'idée par exemple de créer des greffons de peau à partir des cellules souches d'un·e patient·e. De telles techniques offrent l'avantage d'éviter tout risque de rejet. « La peau est un tissu relativement simple, pas vascularisé et assez superficiel, dont l'étude a d'importants débouchés notamment cosmétique. Cela explique que les techniques de bio-impression aboutissent plus rapidement dans ce cas, alors que les applications sur des tissus complexes comme les travaux de l'entreprise Organovo sur le foie se font à des échelles de temps plus lointaines. »

En cosmétique, les recherches de méthodes alternative à l'exploitation animale se sont accélérées depuis l’annonce en 1993 de l’interdiction progressive des essais sur les animaux pour les cosmétiques vendus en Europe, un processus achevé en 2013 et qui donnent l'exemple à d'autres pays. Plus de 200 méthodes alternatives à la recherche animale ont déjà été développées et validées par l’OCDE, parmi lesquelles le microdosage, les techniques d’imagerie non invasives, les simulations sur ordinateur et les tests in vitro.

En se servant d’une structure semblable à l’épiderme humain afin de mesurer l’irritation de la peau provoquée par les produits chimiques présents dans les cosmétiques, le développement de la peau artificielle constitue une alternative prometteuse aux expériences sur les animaux. Les recherches aboutissent à des peaux de plus en plus proches de la réalité, même s'il n’existe pas encore de modèle de peau complète et fonctionnelle à cause de la complexité de cet organe.

En savoir plus

Reconstruire la peau, au plus près du réel, Le Monde – Sciences

Cosmétiques : vers la fin des tests sur les animaux ?, Le magazine du monde

Impression 3D Laser du vivant : une approche innovante à Bordeaux, dossier de l'INSERM

Le site de Poietis, une entreprise de Pessac qui conçoit et développe des tissus biologiques humains pour des applications de recherche et en médecine régénératrice

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email
Entrées associées