S'inscrire identifiants oubliés ?

Génomique et médecine personnalisée

L'essor de la génomique

L'intégralité du génome humain a été séquencée, de manière globale, au début des années 2000, dans le cadre d'un projet scientifique d'ampleur inédite. 3 milliards de bases (nucléotides) ont ...

Mercure et environnement

Un comité international de scientifiques a produit une évaluation mondiale du mercure pour l'UNE (Nations Unies pour l'environnement). Le rapport de 2018 démontre une augmentation significative du mercure dans l'atmosphère avec une ...

La bouche artificielle

Comprendre le rôle de la bouche

Tous les jours, plusieurs fois par jour, la bouche effectue la manducation. La manducation est l'action qui regroupe les opérations antérieures à la digestion que sont la préhension, la mastication, l'insalivation, la ventilation et la déglutition.

Nouvelle exploration du sol martien

© NASA/JPL-Caltech

Douzième mission du programme Discovery de la NASA, et unique mission de 2018, InSight (INterior exploration using Seismic Investigations, Geodesy and Heat Transport) a été lancée le 5 mai 2018 et arrivera à destination de Mars le 26 novembre prochain. Son but est d'affiner ...

Des bactéries résistantes aux radiations

© DR / KAERI / A. De Groot

Des rayons nocifs

La radioactivité se caractérise par l'émission de rayonnements alpha, bêta et gamma. Les dommages induits par ces rayonnements ionisants ...

Le nouvel or vert

Fabien Esculier, chercheur à l’École des Ponts ParisTech, a récemment publié les résultats de ses recherches portant sur une gestion alternative des urines et matières fécales. Ces recherches font partie du programme OCAPI (Optimisation des cycles Carbone, Azote et Phosphore en ville) qui ...

BepiColombo

(C) ESA. BepiColombo
La mission spatiale BepiColombo, lancée le 20 octobre 2018, depuis le Centre Spatial de Kourou en Guyane, se dirige vers Mercure.

Deux orbiteurs pour étudier Mercure

Après les sondes américaines Mariner10 en 1973 et Messenger ...

Lasers à l'honneur pour le Prix Nobel 2018

Arthur Ashkin a été primé pour l'invention des «pinces optiques», dont le principe repose sur l'utilisation des forces liées à la réfraction d’un faisceau laser en milieu transparent. Cette force va alors permettre de maintenir et de déplacer des objets microscopiques, voire nanoscopiques tels des atomes, des virus, des bactéries et autres cellules vivantes.
L'avantage de cette technique est qu'elle est non-destructive : les faisceaux lasers peuvent atteindre les éléments internes d'une cellule sans en détruire la membrane. C'est pourquoi elle est très utilisée en biologie où des chercheurs ont, par exemple, réussi à sonder et mesurer les forces entre des particules et l'élasticité de l'ADN ou encore à désobstruer des vaisseaux sanguins.

 

La seconde moitié du Prix a été attribuée à Gérard Mourou, professeur et membre du Haut-collège de l’École polytechnique et Donna Strickland de l'Université de Waterloo, au Canada, pour avoir conjointement élaboré une méthode de génération d’impulsions optiques ultra-courtes de haute intensité.

Dans les années 1980, l'amplification des faisceaux lasers semblait marquer le pas.
La technique mise au point par Mourou et Strickland se nomme «amplification par impulsions» (chirped pulse amplification, CPA). Elle consiste à étirer une brève impulsion laser dans le temps, à l'amplifier puis à la comprimer à nouveau. Le fait d'allonger l'impulsion réduit sa puissance de crête, ce qui permet de l'amplifier sans endommager le dispositif. L'impulsion est ensuite comprimée dans un temps plus court, ce qui augmente considérablement son intensité. Ces impulsions ultra-courtes ont une durée de quelques dizaines de femto-secondes (1fs = 10-15 s), et disposent d'une très haute puissance de l'ordre du pétawatt (1PW=1015 W).

Cette découverte a contribué à l’avancement de la science dans plusieurs domaines de la physique en permettant notamment de fabriquer des lasers de plus en plus intenses pour sonder la matière. Grâce à la précision de coupe obtenue grâce à des impulsions brèves et intenses, la technique CPA a permis des avancées dans le domaine de la chirurgie réfractive de l’œil et du traitement de la cataracte. Elle a également conduit à l'observation de phénomènes ultrarapides tels que les phases transitoires de réactions chimiques.

Publié le 04/10/2018

En savoir plus :

Sur les pinces optiques :
https://www.photoniques.com/articles/photon/pdf/2013/04/photon201366p45.pdf

Sur la CPA :
http://www.cnrs.fr/inp/spip.php?article382
http://www.cea.fr/multimedia/Documents/infographies/impulsions-lasers-femtoseconde-attoseconde_defis-du-cea.pdf

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Imprimer de la peau artificielle
L'impression 3D de tissus humains grâce au laser se développe, avec à la clé des greffes de peau et une alternative à l'exploitation animale dans les essais en cosmétiques.

Réaliser des bio-impressions de peau

La peau est une structure complexe, organisée en trois couches de tissus (épiderme, derme, hypoderme). Il s'agit du plus grand organe du corps humain, puisqu'elle représente environ 16% de son poids total. Sa fonction principale est de former une barrière de protection envers le milieu extérieur, qu'il s'agisse des agressions thermiques et mécaniques ou des contaminants qui y sont présents.

L'impression 3D, qui permet la création d'un objet tridimensionnel par l'empilement de couches, a ouvert de très nombreux champs d'expérimentation. Jean-Christophe Fricain, directeur de l'unité Bioingénierie Tissulaire de l'INSERM à Bordeaux, souligne la différence avec la bio-impression, où « il s'agit de la fabrication additive de matériel non plus inerte mais biologique. Il existe plusieurs technologies de bio-impression. On peut utiliser des seringues qui se déplacent grâce à un bras piloté par ordinateur, pour pousser un hydrogel contenant du matériel biologique. On peut mettre au point un système par jet d'encre, qui émet des gouttelettes comme les imprimantes classiques mais dépose là aussi un hydrogel relativement fluide. On peut encore utiliser l'énergie laser pour faire des transferts de goutte comme le fait l'entreprise Poietis, c'est-à-dire des transferts de matière vivante : on combine alors différents composants biologiques, comme les cellules ou la matrice extra-cellulaire, pour organiser des structures qui ressemblent au tissu vivant. »

Une collaboration entre une entreprise de Pessac et l'INSERM a en effet mené à la mise en point une machine capable de produire de la matière vivante grâce à de la lumière laser. Trois semaines sont nécessaires pour reproduire de la peau. L'imprimante dépose, couche par couche, des micro-gouttes contenant des cellules selon un modèle numérique inspirés de tissus existants. Grâce à sa très haute définition, de l'ordre de vingt microns soit la taille maximale d'une cellule, le laser peut reproduire la complexité des tissus avec une grande précision et assurer leur auto-organisation. De plus, il assure la viabilité des cellules à hauteur de plus de 95%.

Des applications en clinique, en pharmacologie et en cosmétique

« À l'échelle micrométrique, l'impression biologique permet d'étudier le comportement de certaines organisation cellulaires, pour une recherche plutôt fondamentale. À l'échelle millimétrique, représenter la partie fonctionnelle d'un organe donne des applications dans le domaine de la toxicologie et de l'étude des médicaments, puisqu'on peut imaginer par exemple la réalisation de micro-modèle tumoraux sur lesquels tester des chimiothérapies avant de l'appliquer aux individus. À l'échelle centimétrique, l'enjeu est plutôt de reproduire des organes. »

À cette échelle des organes et des tissus, les enjeux de la bio-impression dans le domaine médical sont souvent médiatisés, avec l'idée par exemple de créer des greffons de peau à partir des cellules souches d'un·e patient·e. De telles techniques offrent l'avantage d'éviter tout risque de rejet. « La peau est un tissu relativement simple, pas vascularisé et assez superficiel, dont l'étude a d'importants débouchés notamment cosmétique. Cela explique que les techniques de bio-impression aboutissent plus rapidement dans ce cas, alors que les applications sur des tissus complexes comme les travaux de l'entreprise Organovo sur le foie se font à des échelles de temps plus lointaines. »

En cosmétique, les recherches de méthodes alternative à l'exploitation animale se sont accélérées depuis l’annonce en 1993 de l’interdiction progressive des essais sur les animaux pour les cosmétiques vendus en Europe, un processus achevé en 2013 et qui donnent l'exemple à d'autres pays. Plus de 200 méthodes alternatives à la recherche animale ont déjà été développées et validées par l’OCDE, parmi lesquelles le microdosage, les techniques d’imagerie non invasives, les simulations sur ordinateur et les tests in vitro.

En se servant d’une structure semblable à l’épiderme humain afin de mesurer l’irritation de la peau provoquée par les produits chimiques présents dans les cosmétiques, le développement de la peau artificielle constitue une alternative prometteuse aux expériences sur les animaux. Les recherches aboutissent à des peaux de plus en plus proches de la réalité, même s'il n’existe pas encore de modèle de peau complète et fonctionnelle à cause de la complexité de cet organe.

En savoir plus

Reconstruire la peau, au plus près du réel, Le Monde – Sciences

Cosmétiques : vers la fin des tests sur les animaux ?, Le magazine du monde

Impression 3D Laser du vivant : une approche innovante à Bordeaux, dossier de l'INSERM

Le site de Poietis, une entreprise de Pessac qui conçoit et développe des tissus biologiques humains pour des applications de recherche et en médecine régénératrice

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email
Entrées associées