S'inscrire identifiants oubliés ?

Les 90 ans du mot astronautique

En 1927, le mot « astronautique » apparaît pour la première fois dans un bulletin officiel de la Société Astronomique de France, sous la plume de l'ingénieur en aéronautique Esnault-Pelterie  ; dans sa brochure, il tente d'accréditer cette nouvelle science considérée ...

Le canal à houle

(C) Marlene Thyssen. CC Bys 4.0

L’impact du changement climatique sur le littoral

Selon un dernier rapport du GIEC, les océans se seraient élevés de plus de 20 cm depuis la fin du XIXe siècle, et cette élévation pourrait atteindre 1 mètre d'ici ...

La stabilité du collagène

(C) Iramis - CEA. La spectrométrie de masse permet de sonder la stabilité de modèles de la triple hélice de collagène après irradiation.

Le collagène

Les propriétés mécaniques des tissus humains tels la peau, les ongles ...

Diatomées marines et climatologie

Diatomées pennées. Auteur : UBO

La pompe biologique de carbone
Les océans, qui contiennent 65 fois plus de dioxyde de carbone (CO2) que l’atmosphère, jouent un rôle crucial dans la régulation du climat. Ils sont en effet capables d’échanger ...

Emilie du Châtelet (1706-1749)

Longtemps ignorée, Emilie du Châtelet incarne désormais la femme des Lumières par excellence. Il aura fallu attendre le XXe siècle et un regain d'intérêt pour l'Histoire féminine pour que d'aucuns s'intéressent à la première femme authentiquement scientifique. ...

De la lumière superfluide

C'est la récente prouesse d'une équipe italo-canadienne réunissant l'Ecole Polytechnique de Montréal et le CNR Nanotec de Lecce : produire une lumière capable de s'écouler comme un liquide "parfait", entourant le moindre obstacle sans jamais s'évanouir. ...

Clichés d'astéroïdes

(C) ESO/Vernazza et al. Dans le sens des aiguilles d’une montre en partant du haut à gauche, les astéroïdes Amphitrite, Bamberga, Pallas et Julie.

Les observations

L'instrument SPHERE (Spectro-Polarimètre à Haut contraste dédié ...

Des signaux électriques chez les bactéries

(C) By Lamiot - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20798283

Depuis la fin des années 1970, les microbiologistes savent que, chez de nombreux microorganismes, la vie communautaire passe par la production d’une matrice adhésive extracellulaire constituée de polymères qu’ils excrètent. Ce tapis appelé biofilm sur lequel ils se développent et qui les lie, joue notamment le rôle d’un support permettant la communication entre les cellules. Si, par exemple, la nourriture vient à manquer à des bactéries situées au centre d’une colonie, celles à la périphérie arrêtent la production du biofilm, si bien que la colonie cesse de croître. Jusqu’à récemment, on pensait que c’est grâce des molécules excrétées au centre et migrant par diffusion vers l’extérieur que les cellules périphériques sont averties. Mais grâce à des expériences menées à l’Université de San Diego en Californie, il apparaît qu’il s’agit en fait de signaux électriques, lesquels se révèlent beaucoup plus efficaces pour la communication que les messages chimiques. Il a été démontré que le manque de nourriture provoque l'expulsion d’ions potassium (K+) hors des bactéries. Ces ions déclenchent à leur tour l’émission de K+ par d’autres bactéries et ainsi de suite. Ainsi, c’est une onde de « libération de K+ » qui se propage de proche en proche, à quelques millimètres par heure, et parvient aux cellules à la périphérie de la colonie, lesquelles cessent alors la production de biofilm. Les chercheurs ont ensuite montré que le nuage d’ions K+ qui poursuit son chemin hors du biofilm permet de recruter des bactéries libres qui viennent alors se joindre à la colonie. Chose extraordinaire, cela attire non seulement les bactéries de la même espèce mais aussi d’autres bactéries ! Par ailleurs, ces mêmes ions K+ permettent à deux biofilms de communiquer. Ainsi, sous certaines conditions, les colonies se synchronisent : pendant que l’une se nourrit, l’autre marque une pause et inversement, ce qui leur permet de gérer la nourriture de façon optimale. Cette grande découverte, à savoir la communication électrique entre les bactéries, soulève une question intéressante : sachant que les signaux électriques le long des neurones se propagent grâce à la sortie d’ions K+, cette communication électrique bactérienne serait-elle l’ancêtre du neurone ?

Publié le 28/11/2017

En savoir plus

https://www.scientificamerican.com/article/bacteria-use-brainlike-bursts-of-electricity-to-communicate/

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Imprimer de la peau artificielle
L'impression 3D de tissus humains grâce au laser se développe, avec à la clé des greffes de peau et une alternative à l'exploitation animale dans les essais en cosmétiques.

Réaliser des bio-impressions de peau

La peau est une structure complexe, organisée en trois couches de tissus (épiderme, derme, hypoderme). Il s'agit du plus grand organe du corps humain, puisqu'elle représente environ 16% de son poids total. Sa fonction principale est de former une barrière de protection envers le milieu extérieur, qu'il s'agisse des agressions thermiques et mécaniques ou des contaminants qui y sont présents.

L'impression 3D, qui permet la création d'un objet tridimensionnel par l'empilement de couches, a ouvert de très nombreux champs d'expérimentation. Jean-Christophe Fricain, directeur de l'unité Bioingénierie Tissulaire de l'INSERM à Bordeaux, souligne la différence avec la bio-impression, où « il s'agit de la fabrication additive de matériel non plus inerte mais biologique. Il existe plusieurs technologies de bio-impression. On peut utiliser des seringues qui se déplacent grâce à un bras piloté par ordinateur, pour pousser un hydrogel contenant du matériel biologique. On peut mettre au point un système par jet d'encre, qui émet des gouttelettes comme les imprimantes classiques mais dépose là aussi un hydrogel relativement fluide. On peut encore utiliser l'énergie laser pour faire des transferts de goutte comme le fait l'entreprise Poietis, c'est-à-dire des transferts de matière vivante : on combine alors différents composants biologiques, comme les cellules ou la matrice extra-cellulaire, pour organiser des structures qui ressemblent au tissu vivant. »

Une collaboration entre une entreprise de Pessac et l'INSERM a en effet mené à la mise en point une machine capable de produire de la matière vivante grâce à de la lumière laser. Trois semaines sont nécessaires pour reproduire de la peau. L'imprimante dépose, couche par couche, des micro-gouttes contenant des cellules selon un modèle numérique inspirés de tissus existants. Grâce à sa très haute définition, de l'ordre de vingt microns soit la taille maximale d'une cellule, le laser peut reproduire la complexité des tissus avec une grande précision et assurer leur auto-organisation. De plus, il assure la viabilité des cellules à hauteur de plus de 95%.

Des applications en clinique, en pharmacologie et en cosmétique

« À l'échelle micrométrique, l'impression biologique permet d'étudier le comportement de certaines organisation cellulaires, pour une recherche plutôt fondamentale. À l'échelle millimétrique, représenter la partie fonctionnelle d'un organe donne des applications dans le domaine de la toxicologie et de l'étude des médicaments, puisqu'on peut imaginer par exemple la réalisation de micro-modèle tumoraux sur lesquels tester des chimiothérapies avant de l'appliquer aux individus. À l'échelle centimétrique, l'enjeu est plutôt de reproduire des organes. »

À cette échelle des organes et des tissus, les enjeux de la bio-impression dans le domaine médical sont souvent médiatisés, avec l'idée par exemple de créer des greffons de peau à partir des cellules souches d'un·e patient·e. De telles techniques offrent l'avantage d'éviter tout risque de rejet. « La peau est un tissu relativement simple, pas vascularisé et assez superficiel, dont l'étude a d'importants débouchés notamment cosmétique. Cela explique que les techniques de bio-impression aboutissent plus rapidement dans ce cas, alors que les applications sur des tissus complexes comme les travaux de l'entreprise Organovo sur le foie se font à des échelles de temps plus lointaines. »

En cosmétique, les recherches de méthodes alternative à l'exploitation animale se sont accélérées depuis l’annonce en 1993 de l’interdiction progressive des essais sur les animaux pour les cosmétiques vendus en Europe, un processus achevé en 2013 et qui donnent l'exemple à d'autres pays. Plus de 200 méthodes alternatives à la recherche animale ont déjà été développées et validées par l’OCDE, parmi lesquelles le microdosage, les techniques d’imagerie non invasives, les simulations sur ordinateur et les tests in vitro.

En se servant d’une structure semblable à l’épiderme humain afin de mesurer l’irritation de la peau provoquée par les produits chimiques présents dans les cosmétiques, le développement de la peau artificielle constitue une alternative prometteuse aux expériences sur les animaux. Les recherches aboutissent à des peaux de plus en plus proches de la réalité, même s'il n’existe pas encore de modèle de peau complète et fonctionnelle à cause de la complexité de cet organe.

En savoir plus

Reconstruire la peau, au plus près du réel, Le Monde – Sciences

Cosmétiques : vers la fin des tests sur les animaux ?, Le magazine du monde

Impression 3D Laser du vivant : une approche innovante à Bordeaux, dossier de l'INSERM

Le site de Poietis, une entreprise de Pessac qui conçoit et développe des tissus biologiques humains pour des applications de recherche et en médecine régénératrice

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email
Entrées associées