S'inscrire identifiants oubliés ?

Alzheimer et l'immunité du cerveau

Qui est touché par la maladie d'Alzheimer ?

La maladie neurodégénérative d’Alzheimer est la cause la plus courante de démence, puisqu'elle serait à l’origine de près de 70% des cas. Ses premières ...

Alzheimer et l'immunité du cerveau

Qui est touché par la maladie d'Alzheimer ?

La maladie neurodégénérative d’Alzheimer est la cause la plus courante de démence, puisqu'elle serait à l’origine de près de 70% des cas. Ses premières ...

Vers un nouvel outil de génie génétique

Que sont les ARN circulaires ?

L'ARN, acide ribonucléique constitué principalement d'un seul brin de nucléotide, est une molécule non codante ou participant à l'expression du

Observation directe d'une exoplanète

L'instrument Sphère et ses techniques de détection

Comment détecter les exoplanètes ? L'entreprise est difficile puisque les planètes n'émettent pas de lumière par elles-mêmes, elles réfléchissent ...

La microfluidique pour réduire la pollution

La physique de la microfluidique

La microfluidique, science des fluides au niveau du micromètre, est apparue au début des années 2000. Les phénomènes mettant en jeu les fluides existent partout dans la nature, ...

L'accélération de l'expansion de l'Univers

Le modèle cosmologique à l'épreuve

Une des énigmes majeures de l'astrophysique est de comprendre l'accélération de l'expansion de l'Univers. Afin de caractériser la nature de l'énergie ...

Un tamis moléculaire plus performant et vert

La purification du gaz naturel

Le gaz naturel extrait du sol a besoin que l'on élimine l'eau et le dioxyde de carbone qu'il contient, afin que seul le

Dévier les astéroïdes géocroiseurs

Quels astéroïdes nous menacent ?

Les astéroïdes sont des corps rocheux errant dans l'espace, d'un diamètre compris entre dix mètres et mille kilomètres. Plusieurs millions d'entre eux gravitent dans le système solaire, notamment entre Mars et Jupiter dans la ceinture principale d'astéroïdes, ou encore, dans la ceinture de Kuiper au-delà de Neptune. Par le jeu des perturbations gravitationnelles, leur trajectoire les fait parfois croiser notre orbite, auquel cas on les appelle des géocroiseurs. Lorsqu'il pénètrent dans l'atmosphère et atteignent la surface, il s'agit de météorites.

Comme les comètes, les astéroïdes ont contribué à l'apparition de la vie sur Terre en y apportant de l'eau et des matériaux organiques, mais ils ont aussi provoqué des destructions, directement par leur impact ou indirectement par leurs effets sur le climat et les écosystèmes. Le risque d'être touché par un astéroïde est faible à l'échelle d'une vie humaine, mais certain sur la durée, avec des effets dévastateurs s'il tombe sur une zone densément peuplée.

La communauté scientifique parvient aujourd'hui à surveiller 90% des objets célestes de plus de 1 kilomètre, 30% des astéroïdes de 160 mètres et plus et 1% des corps de plus de 30 mètres, ces derniers pouvant détruire une ville. Les efforts s'accroissent pour mieux les recenser et développer des missions permettant de réagir à leur éventuelle venue. Leur potentiel de dangerosité est classé selon l'échelle de Turin, graduée de 0 à 10, 10 signifiant une collision frontale avec la planète.

Trois techniques pour dévier un astéroïde

Pour se protéger d'une collision dangereuse, il faut s'adapter aux risques possibles. Ainsi, pour les astéroïdes de taille inférieure à 50 mètres avec un temps d'impact très court, la seule possibilité est de prédire le point d'impact et d'évacuer la zone concernée. Si l'objet est plus gros ou le temps avant l'impact plus long, trois techniques sont à l'étude pour faire dévier l'astéroïde et éviter la collision.

Pour les astéroïdes de taille inférieure à cinquante mètres avec un temps d'impact suffisant, la méthode du tracteur gravitationnel consiste à envoyer un assemblage assez massif de satellites artificiels près de l'astéroïde. La force de gravitation va alors modifier la vitesse et la trajectoire de l'astéroïde, l'envoyant sur une orbite différente de celle de la planète. Cette solution, qui nécessite des modélisations et des calculs très poussés, n'existe pour l'instant qu'à l'état de théorie.

Pour les astéroïdes de taille comprise entre cinquante mètres et plusieurs centaines de mètres, la technique de l'impacteur cinétique consiste à envoyer une fusée heurter à très grande vitesse l'astéroïde, à un endroit et avec une vitesse précise. La mission américano-européenne AIDA mettra à l'épreuve cette solution, avec l'engin autoguidé baptisé DART. En 2022, il devra percuter la lune de l'astéroïde Didymos, afin d'observer la réaction de l'objet céleste.

Pour les astéroïdes de taille supérieure à un kilomètre, la solution envisagée est de lancer une ogive nucléaire dans l'espace pour la faire exploser à proximité de l'astéroïde. Le risque est de générer plusieurs morceaux au comportement imprévisible, qui pourraient donc être plusieurs à percuter la planète en suivant leur nouvelle trajectoire. Seuls des travaux de simulation étudient cette idée, car les objets de grande taille sont quasiment tous identifiés et ne posent aucun problème pour les siècles à venir.

En savoir plus

Une sonde à l'assaut d'un astéroïde, sur Sciences en ligne

La journée mondiale des astéroïdes, sur Explorathèque

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Propriétés du graphène
Les qualités électroniques et mécaniques du graphène ouvrent des pistes technologiques dans les domaines de l'électronique, de l'énergie, de la santé et des matériaux.

Publié le 31 mars 2017

Le graphène est un matériau en deux dimensions, un cristal constitué d’atomes de carbone agencés en hexagones. Dans la nature, l'empilement de couches de graphène forme le graphite, que l'on rencontre couramment dans les crayons. Enroulé sur lui-même, il forme les nanotubes. Flexible, léger, ultrarésistant, transparent, excellent conducteur, imperméable à de nombreux gaz, le graphène a des qualités électroniques et mécaniques qui lui ouvrent de nombreuses pistes dans les domaines des nanotechnologies et des sciences des matériaux.

Pour l'instant, sa structure peu modulable limite ses applications et ses performances et sa production reste très problématique et onéreuse. Le principal obstacle à franchir est donc la synthèse de la molécule de graphène elle-même, selon des procédés rentables. Des recherche cherchent à mettre en point des analogues organiques du graphène, avec les mêmes propriétés, mais plus faciles à produire. Pour une étude publiée dans Nature Chemistry, la méthode de synthèse mise au point devrait permettre la conception d’autres analogues organiques du graphène, ce qui constitue un enjeu majeur en chimie des matériaux.

Le graphène et l'électronique

Le graphène n'est ni un métal ni un semi-conducteur, ce qui laisse la possibilité de lui conférer différentes propriétés. Par exemple, obtenir une surface transparente, flexible et conductrice. Cela ouvre ouvre la voie à l’électronique souple, aussi bien pour les écrans des téléphones portables et des tablettes que pour le secteur textile. Grâce à la mobilité des électrons dans le graphène, qui se propagent cent fois plus rapidement que dans le silicium, ce matériau conducteur peut révolutionner le domaine de l'électronique rapide. Pour des systèmes de détection, par exemple ceux des pare-chocs dédiés au respect automatique des distances de sécurité, ou pour des applications sans fil telles que les télécommunications à haut débit, les communications par satellite, les radars et la photodétection en astrophysique.

Il est possible aussi de créer des dispositifs hybrides, associant par exemple étain et graphène, qui peuvent devenir supraconducteurs à partir de l'application d'une tension électrique. Avec cette nouvelle propriété, le courant se déplace sans perte, ce qui pourra servir notamment à la conception des ordinateurs quantiques, importante avancée attendue dans le domaine du traitement de l'information.

Le graphène et l'énergie

Sous sa forme de minces feuillets, le graphène sert au développement du photovoltaïque. Grâce à sa transparence, sa flexibilité et son excellente conductivité, le graphène peut remplacer dans la fabrication des électrodes des cellules solaires, l’actuel oxyde d’indium-étain, un matériau rare et toxique.

De même, ses propriétés électriques pourraient lui permettre de remplacer le carbone dans les batteries lithium-ion, qui alimentent la plupart de nos appareils électroniques. Enrichies en graphène, la conductivité des électrodes est améliorée, en plus d'augmenter la quantité d'énergie maximale emmagasinée et la durée de vie de la batterie.

Les supercondensateurs, de leur côté, pourraient recharger un téléphone portable en quelques secondes. Les surfaces poreuses des électrodes étant actuellement composées de charbon en poudre, les réaliser avec des nanofeuillets de graphène permettrait d’obtenir une plus grande capacité de stockage des ions. À plus long terme, l'hydrogène des piles à combustible pourrait être emmagasiné dans les feuillets de carbone du graphène plutôt que dans des bonbonnes sous pression. Cela permettrait d'atteindre un meilleur rendement, d'améliorer sans doute la sécurité et de diminuer le coût.

Le graphène et la santé

Avec sa large surface de contact, le graphène est très efficace pour détecter la présence des gaz. Associée à sa conductivité électrique, cette propriété permettrait de détecter une seule molécule de gaz parmi un milliard d’autres, avec l'avantage pour les capteurs de fonctionner à température ambiante. La détection sensible de la pollution sera utile pour sa santé des villes et des campagnes, en aéronautique et en médecine.

Grâce à sa propriété encore mal comprise de s'accumuler dans les tumeurs, le graphène pourrait être utilisé pour cibler les cellules cancéreuses. Soit pour les rendre visible par imagerie photoacoustique en liant les particules de graphène à de l'or, soit pour détruire spécifiquement les cellules malades en chauffant les particules de graphène. En plus de diagnostiquer et traiter les cancers, le matériau pourrait aider à l'ingénierie tissulaire, en accélérant la différenciation de cellules souches en cellules spécialisées.

Le graphène pourrait aussi révolutionner le domaine la désalinisation de l’eau de mer, en permettant à l'eau de mer de passer à travers une membrane extrêmement fine.

Le graphène et les matériaux

Deux cents fois plus résistant que l’acier mais six fois plus léger, et encore plus lorsqu'il fait partie de matériaux composites, le graphène pourrait se substituer à certains métaux. Par exemple, pour la construction d’avions plus légers donc moins coûteux et moins gourmands en énergie. En outre, de tels composites permettent de mieux évacuer le courant, ce qui évite d'ajouter une protection métallique supplémentaire pour évacuer la foudre. Là encore, gain de poids donc moins d'énergie consommée.

En savoir plus

Le graphène superstar, CNRS Le Journal (4 épisodes)

Les prouesses de l'électronique flexible, Sciences et Avenir

Des polymères organiques pour remplacer le graphène, Pour la Science

Arthur Jeannot
Twitter Facebook Google Plus Linkedin email