S'inscrire identifiants oubliés ?

Bioacoustique et applications

Cat CC BY 2.0 via Wikimedia Commons

Le cri d'alarme des ailes

En 1871, Charles Darwin signalait l’existence de signaux non vocaux chez certains oiseaux, produits par leurs plumes, lors de leurs parades amoureuses. Des chercheurs de l’université nationale d’Australie ...

Du plastique numérique

Des chercheurs ont réussi à inscrire et lire plusieurs octets d'information stockés sur des polymères synthétiques. C'est-à-dire à une échelle 100 fois plus petite que celle des disques durs actuels.

La piste des plastiques numériques

Cela ...

Marie Curie (1867-1934)

Une scientifique d'exception

Née en Pologne à Varsovie en 1867, Marie Curie a mené toute sa carrière scientifique en France. Après de brillantes études en physique et en mathématiques, à la Sorbonne, éprise de "science pure", elle se lance dans ...

La foudre et les neutrons

(C) Thomas Bresson - Eclairs, CC BY 2.0

On sait depuis près de soixante ans que sous l’impact des « rayons cosmiques » - essentiellement des protons de haute énergie dont l’origine reste inconnue - les noyaux des atomes percutés à haute altitude éclatent en ...

Le délai de Newton-Wigner

(C) Wikimedia

Une avancée récente devrait permettre une meilleure maîtrise de la transmission de l’information par fibre optique

Un peu de réflexion
Dans une fibre ...

Prix Nobel de chimie 2017

© Martin Högbom/The Royal Swedish Academy of Sciences

Le prix Nobel de Chimie 2017 a été attribué à trois scientifiques pour leurs travaux permettant l'avènement de la cryo-microscopie électronique. Cette technique d'imagerie consiste à geler les molécules ...

Ondes gravitationnelles : du nouveau

Les ondes gravitationnelles et la Relativité générale 

Albert Einstein a révolutionné la physique moderne, d'abord en 1905 avec la théorie de la Relativité restreinte, puis en 1915 avec la théorie de la Relativité Générale. Cette dernière ...

Tchouri ou l'âge des comètes

La mission Rosetta de l'ESA a montré que la comète « Tchouri » (67P Churyumov-Gerasimenko), sur laquelle l'atterrisseur de la sonde a fini par s'écraser, est composée à près de 40 % de molécules organiques. D'après les travaux de Jean-Loup Bertaux, du Laboratoire atmosphères, milieux, observations spatiales (CNRS/UPMC/Univ. Versailles–Saint-Quentin-en-Yvelines), et Rosine Lallement, du laboratoire Galaxies, étoiles, physique et instrumentation (Observatoire de Paris/CNRS/Université Paris Diderot), ces molécules organiques auraient été formées dans le milieu interstellaire, avant la formation du système solaire.

En effet, l’on sait grâce à l’étude de la lumière des étoiles, et notamment des bandes diffuses interstellaires (« Diffuse Interstellar Bands », DIB), que des molécules organiques complexes sont présentes en quantité dans le milieu interstellaire. Dans les nuages interstellaires très denses, et notamment ceux dans lesquels une étoile va se former, les DIB ont tendance à diminuer parce que, d’après l’hypothèse émise par les deux chercheurs, les molécules organiques s’agglutinent et ne peuvent plus absorber autant de lumière. Le processus de formation des comètes, par agglutination non violente de petits grains de matières, aurait permis à ces molécules préexistantes au système solaire d’être préservées et identifiées 4,6 milliards d’années plus tard au sein de Tchouri.

Pour connaître la nature exacte de cette mystérieuse matière interstellaire, il faudra mettre sur pied une mission spatiale de collecte d’échantillons destinés à revenir sur Terre pour être analysés en laboratoire. En tout cas, si la matière organique des comètes provient bien du milieu interstellaire et qu’elle a joué un rôle dans l’apparition de la vie dur terre, rien n’interdit de penser qu’il en est de même ailleurs dans l’univers.

publié le 25 septembre 2017

En savoir plus

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


La santé auditive
Le traitement des déficiences auditives implique de nombreuses recherches et innovations.

Un capital à protéger

Nul n'est besoin de souligner l'importance d'une bonne audition dans notre vie, pour les relations sociales, l'apprentissage, etc.. Malheureusement, l'appareil auditif ne fonctionne pas toujours de manière parfaite, et en particulier à cause des agressions qu'il subit. Les déficiences auditives peuvent avoir des origines diverses, parfois génétiques, parfois liées à l'environnement.

La perte progressive de l'audition, due au vieillissement du système auditif (presbyacousie), débute généralement vers cinquante ou soixante ans. L'exposition à des niveaux de bruit excessifs peut également entraîner des déficiences auditives sévères. C'est pourquoi il faut sensibiliser aux risques que représentent des pratiques souvent festives, mais qui peuvent s'avérer dangereuses. La prévention insiste donc sur l'existence de bouchons d'oreilles adapté à l'écoute de la musique, et qui protège notre capital auditif.

Les progrès de la compensation

Depuis le cornet acoustique, la médecine et la technique ont fait d'incroyables progrès dans la compensation des problèmes auditifs et de la surdité.

Les premières prothèses auditives utilisaient l'invention de Graham Bell, le microphone à charbon assurant l'amplification du son. Les progrès de de l'électronique ont bénéficié à ce secteur, avec successivement, l'utilisation des amplificateurs à lampe, à transistor, puis à circuit intégré.Une marque emblématique de cette ère des audioprothèses analogiques, Sonotone, est restée dans le vocabulaire. À cette époque, les réglages, effectués grâce à une vis placée sur l'appareil, sont limités : niveau de gain, ajustement des filtres coupe aigu et coupe grave, limitation du niveau de sortie.

Après l'apparition des commandes numériques en 1997, les premiers appareils numériques font leur apparition la même année. Un véritable traitement du signal devient possible. Actuellement, il est possible d' affiner le réglage d'intensité et de différencier la parole du bruit Les dispositifs anti-Larsen se sont perfectionnés : ils mettent en œuvre des décalages en fréquence qui évitent ce sifflement caractéristique. Les appareils auditifs sont entrés dans l'ère de la communication numérique avec le smartphone, avec la télévision, avec l'Internet, ils accèdent ainsi à des ressources informatiques plus importantes que la puce qu'ils renferment. Cela leur permet d'effectuer des traitements comme la classification automatique des sons de l'environnement.

L'audition dans le bruit est l'un des défis des audioprothèses depuis toujours. Identifier les signaux correspondant à la parole permet de réduire le bruit de manière sélective à l'intérieur du spectre de la parole. L'utilisation de réseaux de neurones profonds comme pour la reconnaissance vocale est l'une des pistes d'amélioration. Plus généralement, l'un des axes de progrès consiste à tenir compte de l'intention du sujet, en particulier en jouant sur la directionnalité de microphones, ce qui permet de diriger la réception vers des sources de sons désirées, un interlocuteur par exemple.

La médecine et l'espoir de la régénération

Après son cheminement dans l'oreille externe et l'oreille moyenne, l'onde acoustique se propage sur la cochlée, qui vibre en fonction des fréquences sonores, depuis sa base pour les fréquences hautes jusqu'à son apex pour les fréquences basses. À la surface de la cochlée, les cellules ciliées, qui perçoivent les vibrations acoustiques dans l'oreille sonore, font office de transducteurs. Au nombre de 15 000, elles transmettent un signal électrique au nerf auditif. Formées dès la naissance, leur perte est irrémédiable, chez l'homme comme chez les autres mammifères car elles ne se régénèrent pas.

Pour remédier à la destruction partielle ou totale des cellules ciliées, on pose depuis 20 ans des implants cochléaires, pour substituer à ces cellules défaillantes des électrodes qui vont stimuler les fibres du nerf auditif. Cette intervention demande une habituation, qui fait appel à la plasticité cérébrale, la durée d'adaptation variant selon les cas. L'expérience à montré l'intérêt de cette méthode, et en particulier l'avantage d'implanter précocément les enfants qui en ont besoin. Évidemment, l'implantation cochléaire a ses limites. Cela se comprend lorsqu'on considère que l'on remplace plusieurs milliers de cellules sensorielles par quelques électrodes (de 12 à 24). Les interférences qui en résultent ne permettent pas une bonne audition dans le bruit, ni une écoute satisfaisante de la musique. De plus, l'implant pose des problèmes d'inflammation de l'appareil auditif.

La pharmacologie pourrait y remédier avec la dexaméthasone, un corticoïde dont la libération dans l'appareil auditif a un effet protecteur, ce qui devrait permettre de mieux conserver l'audition résiduelle. 

Des implants hybrides (acoustiques et électriques) sont envisagés. La médecine régénérative fournit également de nouvelles pistes thérapeutiques. Il s'agit notamment de régénérer des dendrites, ces fibres nerveuses reliant les cellules ciliées au nerf auditif, pour mieux transmettre l'information électrique. Le principe consiste à utiliser la  thérapie génique pour faire exprimer des neurotrophines, facteurs de croissance spécifiques aux cellules nerveuses. La génétique pourrait également permettre des stimulations lumineuses plus précises, de la cochlée, en conférant aux cellules ciliées une photosensibilité. Une autre piste vise à reprogrammer génétiquement les cellules de soutien de la cochlée en cellules ciliées.

Pour en savoir plus

La rédaction de Sciences en Ligne
Twitter Facebook Google Plus Linkedin email
Entrées associées