S'inscrire identifiants oubliés ?

Vers un nouvel outil de génie génétique

Que sont les ARN circulaires ?

L'ARN, acide ribonucléique constitué principalement d'un seul brin de nucléotide, est une molécule non codante ou participant à l'expression du

Observation directe d'une exoplanète

L'instrument Sphère et ses techniques de détection

Comment détecter les exoplanètes ? L'entreprise est difficile puisque les planètes n'émettent pas de lumière par elles-mêmes, elles réfléchissent ...

La microfluidique pour réduire la pollution

La physique de la microfluidique

La microfluidique, science des fluides au niveau du micromètre, est apparue au début des années 2000. Les phénomènes mettant en jeu les fluides existent partout dans la nature, ...

L'accélération de l'expansion de l'Univers

Le modèle cosmologique à l'épreuve

Une des énigmes majeures de l'astrophysique est de comprendre l'accélération de l'expansion de l'Univers. Afin de caractériser la nature de l'énergie ...

Un tamis moléculaire plus performant et vert

La purification du gaz naturel

Le gaz naturel extrait du sol a besoin que l'on élimine l'eau et le dioxyde de carbone qu'il contient, afin que seul le

Dévier les astéroïdes géocroiseurs

Quels astéroïdes nous menacent ?

Les astéroïdes sont des corps rocheux errant dans l'espace, d'un diamètre compris entre dix mètres et mille kilomètres. Plusieurs millions d'entre eux gravitent dans le

Radiographier les volcans grâce aux muons

Flux de muons cosmiques

Dans le modèle standard de la physique des particules, les muons sont des particules élémentaires chargées parfois appelées « électrons lourds ». Produits par la collision entre une

Technologies de l'aérospatial

Des satellites plus petits et plus nombreux

L'arrivée de nouveaux entrants dans l'industrie spatiale et la perspective de nombreuses mises en orbite liées aux constellations de satellites stimule l'innovation et la recherche d'une baisse des coûts de lancement. Ces constellations visent à assurer une couverture Internet à toute la planète, en particulier pour les trois milliards de personnes qui n'y sont pas encore raccordées dans les pays émergents. C'est le cas des neuf cents satellites de la société Oneweb, construits par Airbus et prévus pour être lancés en 2018 en orbite basse.

La production en série s'accompagne de la tendance à rapetisser les satellites, notamment avec l'exemple des nanosatellites, qui mesurent autour d'une dizaine de centimètres cubes. Le projet QB50 consiste ainsi à mettre cinquante nanosatellites en orbite après de la station spatiale internationale, à 415 kilomètres d'altitude. Élaborés par des université, ces satellites permettent aux élèves de se former à l'ingénierie spatiale et mettent à l'épreuve de nouvelles technologies pour la communauté scientifique et industrielle.

L'une des pistes de cette recherche d'économies a été initié par SpaceX aux États-Unis, avec le développement de lanceurs réutilisables, c'est-à-dire de fusées dont certains étages pourraient revenir sur Terre une fois leur mission accomplie. Dans le cas de SpaceX, après avoir atterri sur une plate-forme autonome sur le sol ou en mer, les fusées pourront être rechargées et réutilisées pour de nouveaux décollages. Ces sujets intéressent le CNES et l'ONERA pour le successeur d'Ariane 6. Outre ce lanceur lourd, utilisé pour placer en orbite géostationnaire des satellites de plusieurs tonnes, une autre voie est le lancement aéroporté, qui vise des charges utiles de quelques centaines de kilogrammes.

De nouvelles énergies pour les satellites

Une autre tendance du secteur spatial est le passage de la propulsion chimique à la propulsion électrique, avec des recherches en cours pour miniaturiser les propulsions électriques actuelles. Les moteurs électriques ont donc longtemps été cantonnés au maintien à poste des satellites, sur leur orbite, mais ils ont également trouvé leur application pour la mise à poste. Après sa séparation d'avec le lanceur, en effet, un satellite doit passer par une orbite de transfert qui lui permet de rejoindre l'orbite géostationnaire, avec ses propres moyens de propulsion. En utilisant l'énergie produite par les panneaux solaires du satellite, la propulsion électrique aboutit à un gain de poids en faisant l'économie de lourds réservoirs de carburant. L'inconvénient lié à la propulsion électrique réside dans l'allongement de la durée de mise à poste.

C'est pourquoi il restera certainement une place pour la propulsion chimique. Le CNES (Centre national d'études spatiales), se penche ainsi avec l'Office national d'études et de recherches aérospatiale (ONERA) sur le développement d'un monergol vert pour la propulsion satellitaire. La recherche sur ce nouveau composé ouvre une alternative prometteuse à l'ergol utilisé actuellement, l'hydrazine, dont la toxicité lui fait risquer d'être rapidement bannie de l'espace. Le CNRS et l'ONERA, travaillent à synthétiser cette nouvelle molécule, avec l'enjeu de choisir des matériaux qui résisteront aux hautes températures. L'objectif est de développer ensuite un moteur et de montrant que la propulsion fournit une poussée conséquente, ce qui permettra d'envisager un développement de la technologie et de proposer par la suite un démonstrateur.

L'imagerie satellitaire au service de l'environnement

En plus de l'internet satellitaire et de l'étude directe de l'atmosphère, les satellites permettent l'observation de notre planète depuis l'espace, le meilleur point de vue permettant de comprendre les changements complexes qui l'affectent. Par exemple, les satellites de la série Sentinel, du programme Copernicus, fournissent des informations sur le sol, les océans, l'atmosphère, l'environnement, la sécurité et le changement climatique. En plus d'études scientifiques sur le long terme, les satellites participant à Charte internationale « Espace et catastrophes majeures » peuvent traiter des situations d'urgence comme une éruption volcanique, un feux de forêt ou une catastrophe industrielle, en fournissant rapidement des images et des cartes.

L'imagerie hyper-spectrale peut être utilisée sur des plate-formes terrestres, spatiales ou aéroportées. Elle aide à détecter des objets dans des images grâce à leurs propriétés spectrales, ou à analyser la composition et l'état chimique de matériaux de surface, y compris l'état hydrique des végétaux. C'est le cas du démonstrateur technologique aéroporté Sysiphe de l'ONERA, qui peut acquérir des images d'une résolution de 50 centimètres dans plus de 600 bandes spectrales, allant du visible à l’infrarouge lointain. De telles technologies permettent d'étudier la biodiversité végétale, par exemple pour mettre en place à l'échelle mondiale un véritable bilan de la biodiversité, ou de caractériser les fonds marins en bord de côte.

Croiser les données permet de faire d'autres types de déductions. L'Institut de recherche technologique Saint-Exupéry présente au Salon du Bourget un « Google Earth intelligent ». Les systèmes d'observation développés combinent les bases de données et l'intelligence artificielle, en dotant les satellites d'un système d'apprentissage et d'intelligence collective qui leur permettra d'acquérir jusqu'à 30% d'images supplémentaires et d'améliorer la réactivité aux requêtes humaines, de 1 heure aujourd'hui à 5 minutes. Il s'agit d'anticiper la vague de données qui sera issue de la mise en service, dans les années à venir, de milliers de satellites formant des constellations en orbite basse.

En savoir plus

SpaceX réussit l'atterrissage de son lanceur, sur Sciences en ligne

Les satellites SPOT face aux catastrophes, sur Sciences en ligne

Ariane 6 : la riposte européenne, sur Sciences en ligne

Sentinel-2B, sur Sciences en ligne

L'évolution énergétique des aéronefs, sur Explorathèque

Féminisons les métiers de l’aéronautique, sur Explorathèque

X-CubeSat, un projet pour promouvoir le spatial, sur Explorathèque

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Un accélérateur de particules sous le Louvre
Parmi tous les visiteurs qui arpentent chaque jour les galeries du Louvre, très peu savent que, sous leurs pieds, se cache un accélérateur de particules pas ordinaire. Son objectif : améliorer la connaissance des œuvres confiées au centre qui l'abrite.

Un accélérateur de particules au service des recherches du Louvre

Quand on se demande quels peuvent être les apports des sciences à l'archéologie, chacun a tendance à penser aussitôt à la datation au carbone 14. Mais l'âge n'est pas la seule information que l'on peut déterminer scientifiquement. Grâce à AGLAÉ (pour Accélérateur Grand Louvre d'Analyse Élementaire), un accélérateur de particules situé sous le Louvre, il est possible d'accéder à la composition chimique des oeuvres d'art. Et cela sans les détériorer, même sans les toucher, et avec une excellente précision. À l'origine de ces résultats : les progrès les plus récents en matière de chimie et de physique nucléaire, ainsi que de nombreuses innovations spécifiques au contexte d'utilisation si particulier d' AGLAÉ .

Un principe général commun à différentes applications

Cet accélérateur de particules met en oeuvre différentes méthodes. Leur principe est commun : envoyer un faisceau de particules, plus ou moins énergisé, sur l'objet dont on veut connaître la composition. Ces particules vont interagir avec la matière selon différentes modalités : elles peuvent être déviées ou absorbées. Dans ce dernier cas, on observe l'émission de rayonnements et/ou de nouvelles particules. Ce sont ces derniers que des capteurs vont détecter puis analyser. Les experts pourront comparer les relevés ainsi obtenus avec ceux provenant de l'étude de matériaux connus et déterminer ainsi la composition chimique de l'objet.

La question est maintenant de savoir quelles particules doivent être utilisées pour bombarder l'objet. Selon la nature des matériaux et le niveau de précision attendu, on ne choisira, en effet, pas le même faisceau incident. Pour une étude générale, si on veut connaître les éléments présents soit en majorité, soit à l'état de traces, on utilisera la méthode PIXE (Particle Induced X-Ray Emission), qui permet de doser les éléments présents, du sodium à l'uranium. Pour cette analyse, on envoie sur l'objet un faisceau d'ions ou de protons peu énergétiques qui vont arracher aux atomes traversés un électron proche du noyau. L'atome ainsi touché se trouve alors dans un état instable et excité : le "trou" créé est comblé par un électron venant d'une orbite plus extérieure. En même temps, pour libérer son excès d'énergie, l'atome émet un rayon X. C'est la détermination de l'énergie de ce rayon qui permet de déterminer l'élément chimique. En effectuant cette mesure sur une zone complète de l'objet, on peut retrouver la composition chimique des matériaux utilisés.

D'autres méthodes permettent des analyses soit en profondeur, soit plus précises. La méthode RBS , pour Rutherford Backscattering Spectrometry, permet par exemple de tracer des cartes de composition chimique en profondeur, et la méthode NRA (Nuclear Reaction Analysis) complète les résultats de la technique PIXE : elle donne les mesures des concentrations en éléments les plus légers, de l'hydrogène au sodium.

Des innovations pour s'adapter aux oeuvres à analyser

Initialement, AGLAÉ possédait deux lignes de faisceaux : la première était dotée d'une chambre à vide traditionnelle. La deuxième a été conçue "sur mesure" par l'équipe de physiciens et d'ingénieurs travaillant sur place, pour pouvoir traiter même les objets trop fragiles ou volumineux pour être placés dans la chambre à vide. Il leur a donc fallu imaginer un procédé permettant de réaliser les analyses sans que les résultats ne soient parasités par l'atmosphère. Pour cela, ils ont disposé une fine épaisseur de matière en sortie de l'accélérateur. Elle permet de maintenir le vide en amont tout en laissant passer les particules. Celles-ci interagissent avec l'objet selon les processus décrits ou évoqués ci-dessus et sont détectées, ainsi que les éventuels rayonnements émis, par deux capteurs. L'un d'eux, de grandes dimensions, permet la détection des éléments à l'état de traces. L'autre, plus petit, est intégré dans un dispositif alimenté régulièrement en hélium. On peut de la sorte remplacer l'air par l'hélium, ce qui augmente la sensibilité du capteur et permet d'éliminer le bruit de fond créé par l'argon de l'atmosphère. On appelle l'ensemble de cette ligne "faisceau extrait à l'air" ; elle constitue l'une des nombreuses innovations proposées puis réalisées dans le but d'adapter au mieux AGLAÉ à l'analyse des œuvres d'art.

Un appareil qui a largement fait ses preuves

La performance d'AGLAÉ a été montrée à de très nombreuses reprises depuis le début de son fonctionnement, en 1989. Cet accélérateur unique en son genre a été utile tout d'abord en archéologie et histoire de l'art. C'est grâce à lui qu'on a pu démontrer scientifiquement qu'une tête égyptienne en verre bleu était en fait un faux et qu'on a pu prouver l'origine birmane des yeux en rubis d'une statuette de la déesse mésopotamienne Ishtar, ce qui indique des échanges très anciens entre le Proche et l'Extrême Orient. L'utilisation de l'appareil est aussi utile pour la science de la conservation : il permet de caractériser l'altération des métaux et de comprendre certains mécanismes de corrosion. Grâce à ces données, on pourra définir des normes de conservation et d'exposition adaptées au mieux à chaque objet.

AGLAÉ est aujourd'hui utilisé près de 10 000 fois par an par des chercheurs venant de toute l'Europe. Il reste la seule installation au monde de ce type, située directement au coeur d'un musée. De plus, il ne cesse d'évoluer pour s'adapter aux oeuvres à analyser : actuellement en rénovation, on construit à côté de lui un nouvel appareil qui utilisera d'autres technologies pour compléter aux mieux celles déjà proposées.

En savoir plus

AGLAÉ : son histoire et son fonctionnement

La découverte d'un faux grâce à AGLAÉ

 

Aurore Sallard
Twitter Facebook Google Plus Linkedin email
Entrées associées