S'inscrire identifiants oubliés ?

Bioacoustique et applications

Cat CC BY 2.0 via Wikimedia Commons

Le cri d'alarme des ailes

En 1871, Charles Darwin signalait l’existence de signaux non vocaux chez certains oiseaux, produits par leurs plumes, lors de leurs parades amoureuses. Des chercheurs de l’université nationale d’Australie ...

Du plastique numérique

Des chercheurs ont réussi à inscrire et lire plusieurs octets d'information stockés sur des polymères synthétiques. C'est-à-dire à une échelle 100 fois plus petite que celle des disques durs actuels.

La piste des plastiques numériques

Cela ...

Marie Curie (1867-1934)

Une scientifique d'exception

Née en Pologne à Varsovie en 1867, Marie Curie a mené toute sa carrière scientifique en France. Après de brillantes études en physique et en mathématiques, à la Sorbonne, éprise de "science pure", elle se lance dans ...

La foudre et les neutrons

(C) Thomas Bresson - Eclairs, CC BY 2.0

On sait depuis près de soixante ans que sous l’impact des « rayons cosmiques » - essentiellement des protons de haute énergie dont l’origine reste inconnue - les noyaux des atomes percutés à haute altitude éclatent en ...

Le délai de Newton-Wigner

(C) Wikimedia

Une avancée récente devrait permettre une meilleure maîtrise de la transmission de l’information par fibre optique

Un peu de réflexion
Dans une fibre ...

Prix Nobel de chimie 2017

© Martin Högbom/The Royal Swedish Academy of Sciences

Le prix Nobel de Chimie 2017 a été attribué à trois scientifiques pour leurs travaux permettant l'avènement de la cryo-microscopie électronique. Cette technique d'imagerie consiste à geler les molécules ...

Ondes gravitationnelles : du nouveau

Les ondes gravitationnelles et la Relativité générale 

Albert Einstein a révolutionné la physique moderne, d'abord en 1905 avec la théorie de la Relativité restreinte, puis en 1915 avec la théorie de la Relativité Générale. Cette dernière ...

Tchouri ou l'âge des comètes

La mission Rosetta de l'ESA a montré que la comète « Tchouri » (67P Churyumov-Gerasimenko), sur laquelle l'atterrisseur de la sonde a fini par s'écraser, est composée à près de 40 % de molécules organiques. D'après les travaux de Jean-Loup Bertaux, du Laboratoire atmosphères, milieux, observations spatiales (CNRS/UPMC/Univ. Versailles–Saint-Quentin-en-Yvelines), et Rosine Lallement, du laboratoire Galaxies, étoiles, physique et instrumentation (Observatoire de Paris/CNRS/Université Paris Diderot), ces molécules organiques auraient été formées dans le milieu interstellaire, avant la formation du système solaire.

En effet, l’on sait grâce à l’étude de la lumière des étoiles, et notamment des bandes diffuses interstellaires (« Diffuse Interstellar Bands », DIB), que des molécules organiques complexes sont présentes en quantité dans le milieu interstellaire. Dans les nuages interstellaires très denses, et notamment ceux dans lesquels une étoile va se former, les DIB ont tendance à diminuer parce que, d’après l’hypothèse émise par les deux chercheurs, les molécules organiques s’agglutinent et ne peuvent plus absorber autant de lumière. Le processus de formation des comètes, par agglutination non violente de petits grains de matières, aurait permis à ces molécules préexistantes au système solaire d’être préservées et identifiées 4,6 milliards d’années plus tard au sein de Tchouri.

Pour connaître la nature exacte de cette mystérieuse matière interstellaire, il faudra mettre sur pied une mission spatiale de collecte d’échantillons destinés à revenir sur Terre pour être analysés en laboratoire. En tout cas, si la matière organique des comètes provient bien du milieu interstellaire et qu’elle a joué un rôle dans l’apparition de la vie dur terre, rien n’interdit de penser qu’il en est de même ailleurs dans l’univers.

publié le 25 septembre 2017

En savoir plus

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Un accélérateur de particules sous le Louvre
Parmi tous les visiteurs qui arpentent chaque jour les galeries du Louvre, très peu savent que, sous leurs pieds, se cache un accélérateur de particules pas ordinaire. Son objectif : améliorer la connaissance des œuvres confiées au centre qui l'abrite.

Un accélérateur de particules au service des recherches du Louvre

Quand on se demande quels peuvent être les apports des sciences à l'archéologie, chacun a tendance à penser aussitôt à la datation au carbone 14. Mais l'âge n'est pas la seule information que l'on peut déterminer scientifiquement. Grâce à AGLAÉ (pour Accélérateur Grand Louvre d'Analyse Élementaire), un accélérateur de particules situé sous le Louvre, il est possible d'accéder à la composition chimique des oeuvres d'art. Et cela sans les détériorer, même sans les toucher, et avec une excellente précision. À l'origine de ces résultats : les progrès les plus récents en matière de chimie et de physique nucléaire, ainsi que de nombreuses innovations spécifiques au contexte d'utilisation si particulier d' AGLAÉ .

Un principe général commun à différentes applications

Cet accélérateur de particules met en oeuvre différentes méthodes. Leur principe est commun : envoyer un faisceau de particules, plus ou moins énergisé, sur l'objet dont on veut connaître la composition. Ces particules vont interagir avec la matière selon différentes modalités : elles peuvent être déviées ou absorbées. Dans ce dernier cas, on observe l'émission de rayonnements et/ou de nouvelles particules. Ce sont ces derniers que des capteurs vont détecter puis analyser. Les experts pourront comparer les relevés ainsi obtenus avec ceux provenant de l'étude de matériaux connus et déterminer ainsi la composition chimique de l'objet.

La question est maintenant de savoir quelles particules doivent être utilisées pour bombarder l'objet. Selon la nature des matériaux et le niveau de précision attendu, on ne choisira, en effet, pas le même faisceau incident. Pour une étude générale, si on veut connaître les éléments présents soit en majorité, soit à l'état de traces, on utilisera la méthode PIXE (Particle Induced X-Ray Emission), qui permet de doser les éléments présents, du sodium à l'uranium. Pour cette analyse, on envoie sur l'objet un faisceau d'ions ou de protons peu énergétiques qui vont arracher aux atomes traversés un électron proche du noyau. L'atome ainsi touché se trouve alors dans un état instable et excité : le "trou" créé est comblé par un électron venant d'une orbite plus extérieure. En même temps, pour libérer son excès d'énergie, l'atome émet un rayon X. C'est la détermination de l'énergie de ce rayon qui permet de déterminer l'élément chimique. En effectuant cette mesure sur une zone complète de l'objet, on peut retrouver la composition chimique des matériaux utilisés.

D'autres méthodes permettent des analyses soit en profondeur, soit plus précises. La méthode RBS , pour Rutherford Backscattering Spectrometry, permet par exemple de tracer des cartes de composition chimique en profondeur, et la méthode NRA (Nuclear Reaction Analysis) complète les résultats de la technique PIXE : elle donne les mesures des concentrations en éléments les plus légers, de l'hydrogène au sodium.

Des innovations pour s'adapter aux oeuvres à analyser

Initialement, AGLAÉ possédait deux lignes de faisceaux : la première était dotée d'une chambre à vide traditionnelle. La deuxième a été conçue "sur mesure" par l'équipe de physiciens et d'ingénieurs travaillant sur place, pour pouvoir traiter même les objets trop fragiles ou volumineux pour être placés dans la chambre à vide. Il leur a donc fallu imaginer un procédé permettant de réaliser les analyses sans que les résultats ne soient parasités par l'atmosphère. Pour cela, ils ont disposé une fine épaisseur de matière en sortie de l'accélérateur. Elle permet de maintenir le vide en amont tout en laissant passer les particules. Celles-ci interagissent avec l'objet selon les processus décrits ou évoqués ci-dessus et sont détectées, ainsi que les éventuels rayonnements émis, par deux capteurs. L'un d'eux, de grandes dimensions, permet la détection des éléments à l'état de traces. L'autre, plus petit, est intégré dans un dispositif alimenté régulièrement en hélium. On peut de la sorte remplacer l'air par l'hélium, ce qui augmente la sensibilité du capteur et permet d'éliminer le bruit de fond créé par l'argon de l'atmosphère. On appelle l'ensemble de cette ligne "faisceau extrait à l'air" ; elle constitue l'une des nombreuses innovations proposées puis réalisées dans le but d'adapter au mieux AGLAÉ à l'analyse des œuvres d'art.

Un appareil qui a largement fait ses preuves

La performance d'AGLAÉ a été montrée à de très nombreuses reprises depuis le début de son fonctionnement, en 1989. Cet accélérateur unique en son genre a été utile tout d'abord en archéologie et histoire de l'art. C'est grâce à lui qu'on a pu démontrer scientifiquement qu'une tête égyptienne en verre bleu était en fait un faux et qu'on a pu prouver l'origine birmane des yeux en rubis d'une statuette de la déesse mésopotamienne Ishtar, ce qui indique des échanges très anciens entre le Proche et l'Extrême Orient. L'utilisation de l'appareil est aussi utile pour la science de la conservation : il permet de caractériser l'altération des métaux et de comprendre certains mécanismes de corrosion. Grâce à ces données, on pourra définir des normes de conservation et d'exposition adaptées au mieux à chaque objet.

AGLAÉ est aujourd'hui utilisé près de 10 000 fois par an par des chercheurs venant de toute l'Europe. Il reste la seule installation au monde de ce type, située directement au coeur d'un musée. De plus, il ne cesse d'évoluer pour s'adapter aux oeuvres à analyser : actuellement en rénovation, on construit à côté de lui un nouvel appareil qui utilisera d'autres technologies pour compléter aux mieux celles déjà proposées.

En savoir plus

AGLAÉ : son histoire et son fonctionnement

La découverte d'un faux grâce à AGLAÉ

 

Aurore Sallard
Twitter Facebook Google Plus Linkedin email
Entrées associées