S'inscrire identifiants oubliés ?

Cassini, la descente finale

Une mission exceptionnelle

Cassini est un projet  d'exploration spatiale très ambitieux, avec une sonde qui aura passé près de 20 ans dans l'espace. La sonde Cassini elle-même est la première à être mise en orbite autour de Saturne, dont les missions Voyager ...

Alzheimer et l'immunité du cerveau

Qui est touché par la maladie d'Alzheimer ?

La maladie neurodégénérative d’Alzheimer est la cause la plus courante de démence, puisqu'elle serait à l’origine de près de 70% des cas. Ses premières ...

Vers un nouvel outil de génie génétique

Que sont les ARN circulaires ?

L'ARN, acide ribonucléique constitué principalement d'un seul brin de nucléotide, est une molécule non codante ou participant à l'expression du

Observation directe d'une exoplanète

L'instrument Sphère et ses techniques de détection

Comment détecter les exoplanètes ? L'entreprise est difficile puisque les planètes n'émettent pas de lumière par elles-mêmes, elles réfléchissent ...

La microfluidique pour réduire la pollution

La physique de la microfluidique

La microfluidique, science des fluides au niveau du micromètre, est apparue au début des années 2000. Les phénomènes mettant en jeu les fluides existent partout dans la nature, ...

L'accélération de l'expansion de l'Univers

Le modèle cosmologique à l'épreuve

Une des énigmes majeures de l'astrophysique est de comprendre l'accélération de l'expansion de l'Univers. Afin de caractériser la nature de l'énergie ...

Un tamis moléculaire plus performant et vert

La purification du gaz naturel

Le gaz naturel extrait du sol a besoin que l'on élimine l'eau et le dioxyde de carbone qu'il contient, afin que seul le

Dévier les astéroïdes géocroiseurs

Quels astéroïdes nous menacent ?

Les astéroïdes sont des corps rocheux errant dans l'espace, d'un diamètre compris entre dix mètres et mille kilomètres. Plusieurs millions d'entre eux gravitent dans le système solaire, notamment entre Mars et Jupiter dans la ceinture principale d'astéroïdes, ou encore, dans la ceinture de Kuiper au-delà de Neptune. Par le jeu des perturbations gravitationnelles, leur trajectoire les fait parfois croiser notre orbite, auquel cas on les appelle des géocroiseurs. Lorsqu'il pénètrent dans l'atmosphère et atteignent la surface, il s'agit de météorites.

Comme les comètes, les astéroïdes ont contribué à l'apparition de la vie sur Terre en y apportant de l'eau et des matériaux organiques, mais ils ont aussi provoqué des destructions, directement par leur impact ou indirectement par leurs effets sur le climat et les écosystèmes. Le risque d'être touché par un astéroïde est faible à l'échelle d'une vie humaine, mais certain sur la durée, avec des effets dévastateurs s'il tombe sur une zone densément peuplée.

La communauté scientifique parvient aujourd'hui à surveiller 90% des objets célestes de plus de 1 kilomètre, 30% des astéroïdes de 160 mètres et plus et 1% des corps de plus de 30 mètres, ces derniers pouvant détruire une ville. Les efforts s'accroissent pour mieux les recenser et développer des missions permettant de réagir à leur éventuelle venue. Leur potentiel de dangerosité est classé selon l'échelle de Turin, graduée de 0 à 10, 10 signifiant une collision frontale avec la planète.

Trois techniques pour dévier un astéroïde

Pour se protéger d'une collision dangereuse, il faut s'adapter aux risques possibles. Ainsi, pour les astéroïdes de taille inférieure à 50 mètres avec un temps d'impact très court, la seule possibilité est de prédire le point d'impact et d'évacuer la zone concernée. Si l'objet est plus gros ou le temps avant l'impact plus long, trois techniques sont à l'étude pour faire dévier l'astéroïde et éviter la collision.

Pour les astéroïdes de taille inférieure à cinquante mètres avec un temps d'impact suffisant, la méthode du tracteur gravitationnel consiste à envoyer un assemblage assez massif de satellites artificiels près de l'astéroïde. La force de gravitation va alors modifier la vitesse et la trajectoire de l'astéroïde, l'envoyant sur une orbite différente de celle de la planète. Cette solution, qui nécessite des modélisations et des calculs très poussés, n'existe pour l'instant qu'à l'état de théorie.

Pour les astéroïdes de taille comprise entre cinquante mètres et plusieurs centaines de mètres, la technique de l'impacteur cinétique consiste à envoyer une fusée heurter à très grande vitesse l'astéroïde, à un endroit et avec une vitesse précise. La mission américano-européenne AIDA mettra à l'épreuve cette solution, avec l'engin autoguidé baptisé DART. En 2022, il devra percuter la lune de l'astéroïde Didymos, afin d'observer la réaction de l'objet céleste.

Pour les astéroïdes de taille supérieure à un kilomètre, la solution envisagée est de lancer une ogive nucléaire dans l'espace pour la faire exploser à proximité de l'astéroïde. Le risque est de générer plusieurs morceaux au comportement imprévisible, qui pourraient donc être plusieurs à percuter la planète en suivant leur nouvelle trajectoire. Seuls des travaux de simulation étudient cette idée, car les objets de grande taille sont quasiment tous identifiés et ne posent aucun problème pour les siècles à venir.

En savoir plus

Une sonde à l'assaut d'un astéroïde, sur Sciences en ligne

La journée mondiale des astéroïdes, sur Explorathèque

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Un accélérateur de particules sous le Louvre
Parmi tous les visiteurs qui arpentent chaque jour les galeries du Louvre, très peu savent que, sous leurs pieds, se cache un accélérateur de particules pas ordinaire. Son objectif : améliorer la connaissance des œuvres confiées au centre qui l'abrite.

Un accélérateur de particules au service des recherches du Louvre

Quand on se demande quels peuvent être les apports des sciences à l'archéologie, chacun a tendance à penser aussitôt à la datation au carbone 14. Mais l'âge n'est pas la seule information que l'on peut déterminer scientifiquement. Grâce à AGLAÉ (pour Accélérateur Grand Louvre d'Analyse Élementaire), un accélérateur de particules situé sous le Louvre, il est possible d'accéder à la composition chimique des oeuvres d'art. Et cela sans les détériorer, même sans les toucher, et avec une excellente précision. À l'origine de ces résultats : les progrès les plus récents en matière de chimie et de physique nucléaire, ainsi que de nombreuses innovations spécifiques au contexte d'utilisation si particulier d' AGLAÉ .

Un principe général commun à différentes applications

Cet accélérateur de particules met en oeuvre différentes méthodes. Leur principe est commun : envoyer un faisceau de particules, plus ou moins énergisé, sur l'objet dont on veut connaître la composition. Ces particules vont interagir avec la matière selon différentes modalités : elles peuvent être déviées ou absorbées. Dans ce dernier cas, on observe l'émission de rayonnements et/ou de nouvelles particules. Ce sont ces derniers que des capteurs vont détecter puis analyser. Les experts pourront comparer les relevés ainsi obtenus avec ceux provenant de l'étude de matériaux connus et déterminer ainsi la composition chimique de l'objet.

La question est maintenant de savoir quelles particules doivent être utilisées pour bombarder l'objet. Selon la nature des matériaux et le niveau de précision attendu, on ne choisira, en effet, pas le même faisceau incident. Pour une étude générale, si on veut connaître les éléments présents soit en majorité, soit à l'état de traces, on utilisera la méthode PIXE (Particle Induced X-Ray Emission), qui permet de doser les éléments présents, du sodium à l'uranium. Pour cette analyse, on envoie sur l'objet un faisceau d'ions ou de protons peu énergétiques qui vont arracher aux atomes traversés un électron proche du noyau. L'atome ainsi touché se trouve alors dans un état instable et excité : le "trou" créé est comblé par un électron venant d'une orbite plus extérieure. En même temps, pour libérer son excès d'énergie, l'atome émet un rayon X. C'est la détermination de l'énergie de ce rayon qui permet de déterminer l'élément chimique. En effectuant cette mesure sur une zone complète de l'objet, on peut retrouver la composition chimique des matériaux utilisés.

D'autres méthodes permettent des analyses soit en profondeur, soit plus précises. La méthode RBS , pour Rutherford Backscattering Spectrometry, permet par exemple de tracer des cartes de composition chimique en profondeur, et la méthode NRA (Nuclear Reaction Analysis) complète les résultats de la technique PIXE : elle donne les mesures des concentrations en éléments les plus légers, de l'hydrogène au sodium.

Des innovations pour s'adapter aux oeuvres à analyser

Initialement, AGLAÉ possédait deux lignes de faisceaux : la première était dotée d'une chambre à vide traditionnelle. La deuxième a été conçue "sur mesure" par l'équipe de physiciens et d'ingénieurs travaillant sur place, pour pouvoir traiter même les objets trop fragiles ou volumineux pour être placés dans la chambre à vide. Il leur a donc fallu imaginer un procédé permettant de réaliser les analyses sans que les résultats ne soient parasités par l'atmosphère. Pour cela, ils ont disposé une fine épaisseur de matière en sortie de l'accélérateur. Elle permet de maintenir le vide en amont tout en laissant passer les particules. Celles-ci interagissent avec l'objet selon les processus décrits ou évoqués ci-dessus et sont détectées, ainsi que les éventuels rayonnements émis, par deux capteurs. L'un d'eux, de grandes dimensions, permet la détection des éléments à l'état de traces. L'autre, plus petit, est intégré dans un dispositif alimenté régulièrement en hélium. On peut de la sorte remplacer l'air par l'hélium, ce qui augmente la sensibilité du capteur et permet d'éliminer le bruit de fond créé par l'argon de l'atmosphère. On appelle l'ensemble de cette ligne "faisceau extrait à l'air" ; elle constitue l'une des nombreuses innovations proposées puis réalisées dans le but d'adapter au mieux AGLAÉ à l'analyse des œuvres d'art.

Un appareil qui a largement fait ses preuves

La performance d'AGLAÉ a été montrée à de très nombreuses reprises depuis le début de son fonctionnement, en 1989. Cet accélérateur unique en son genre a été utile tout d'abord en archéologie et histoire de l'art. C'est grâce à lui qu'on a pu démontrer scientifiquement qu'une tête égyptienne en verre bleu était en fait un faux et qu'on a pu prouver l'origine birmane des yeux en rubis d'une statuette de la déesse mésopotamienne Ishtar, ce qui indique des échanges très anciens entre le Proche et l'Extrême Orient. L'utilisation de l'appareil est aussi utile pour la science de la conservation : il permet de caractériser l'altération des métaux et de comprendre certains mécanismes de corrosion. Grâce à ces données, on pourra définir des normes de conservation et d'exposition adaptées au mieux à chaque objet.

AGLAÉ est aujourd'hui utilisé près de 10 000 fois par an par des chercheurs venant de toute l'Europe. Il reste la seule installation au monde de ce type, située directement au coeur d'un musée. De plus, il ne cesse d'évoluer pour s'adapter aux oeuvres à analyser : actuellement en rénovation, on construit à côté de lui un nouvel appareil qui utilisera d'autres technologies pour compléter aux mieux celles déjà proposées.

En savoir plus

AGLAÉ : son histoire et son fonctionnement

La découverte d'un faux grâce à AGLAÉ

 

Aurore Sallard
Twitter Facebook Google Plus Linkedin email
Entrées associées