S'inscrire identifiants oubliés ?

Vers un nouvel outil de génie génétique

Que sont les ARN circulaires ?

L'ARN, acide ribonucléique constitué principalement d'un seul brin de nucléotide, est une molécule non codante ou participant à l'expression du

Observation directe d'une exoplanète

L'instrument Sphère et ses techniques de détection

Comment détecter les exoplanètes ? L'entreprise est difficile puisque les planètes n'émettent pas de lumière par elles-mêmes, elles réfléchissent ...

La microfluidique pour réduire la pollution

La physique de la microfluidique

La microfluidique, science des fluides au niveau du micromètre, est apparue au début des années 2000. Les phénomènes mettant en jeu les fluides existent partout dans la nature, ...

L'accélération de l'expansion de l'Univers

Le modèle cosmologique à l'épreuve

Une des énigmes majeures de l'astrophysique est de comprendre l'accélération de l'expansion de l'Univers. Afin de caractériser la nature de l'énergie ...

Un tamis moléculaire plus performant et vert

La purification du gaz naturel

Le gaz naturel extrait du sol a besoin que l'on élimine l'eau et le dioxyde de carbone qu'il contient, afin que seul le

Dévier les astéroïdes géocroiseurs

Quels astéroïdes nous menacent ?

Les astéroïdes sont des corps rocheux errant dans l'espace, d'un diamètre compris entre dix mètres et mille kilomètres. Plusieurs millions d'entre eux gravitent dans le

Radiographier les volcans grâce aux muons

Flux de muons cosmiques

Dans le modèle standard de la physique des particules, les muons sont des particules élémentaires chargées parfois appelées « électrons lourds ». Produits par la collision entre une

Technologies de l'aérospatial

Des satellites plus petits et plus nombreux

L'arrivée de nouveaux entrants dans l'industrie spatiale et la perspective de nombreuses mises en orbite liées aux constellations de satellites stimule l'innovation et la recherche d'une baisse des coûts de lancement. Ces constellations visent à assurer une couverture Internet à toute la planète, en particulier pour les trois milliards de personnes qui n'y sont pas encore raccordées dans les pays émergents. C'est le cas des neuf cents satellites de la société Oneweb, construits par Airbus et prévus pour être lancés en 2018 en orbite basse.

La production en série s'accompagne de la tendance à rapetisser les satellites, notamment avec l'exemple des nanosatellites, qui mesurent autour d'une dizaine de centimètres cubes. Le projet QB50 consiste ainsi à mettre cinquante nanosatellites en orbite après de la station spatiale internationale, à 415 kilomètres d'altitude. Élaborés par des université, ces satellites permettent aux élèves de se former à l'ingénierie spatiale et mettent à l'épreuve de nouvelles technologies pour la communauté scientifique et industrielle.

L'une des pistes de cette recherche d'économies a été initié par SpaceX aux États-Unis, avec le développement de lanceurs réutilisables, c'est-à-dire de fusées dont certains étages pourraient revenir sur Terre une fois leur mission accomplie. Dans le cas de SpaceX, après avoir atterri sur une plate-forme autonome sur le sol ou en mer, les fusées pourront être rechargées et réutilisées pour de nouveaux décollages. Ces sujets intéressent le CNES et l'ONERA pour le successeur d'Ariane 6. Outre ce lanceur lourd, utilisé pour placer en orbite géostationnaire des satellites de plusieurs tonnes, une autre voie est le lancement aéroporté, qui vise des charges utiles de quelques centaines de kilogrammes.

De nouvelles énergies pour les satellites

Une autre tendance du secteur spatial est le passage de la propulsion chimique à la propulsion électrique, avec des recherches en cours pour miniaturiser les propulsions électriques actuelles. Les moteurs électriques ont donc longtemps été cantonnés au maintien à poste des satellites, sur leur orbite, mais ils ont également trouvé leur application pour la mise à poste. Après sa séparation d'avec le lanceur, en effet, un satellite doit passer par une orbite de transfert qui lui permet de rejoindre l'orbite géostationnaire, avec ses propres moyens de propulsion. En utilisant l'énergie produite par les panneaux solaires du satellite, la propulsion électrique aboutit à un gain de poids en faisant l'économie de lourds réservoirs de carburant. L'inconvénient lié à la propulsion électrique réside dans l'allongement de la durée de mise à poste.

C'est pourquoi il restera certainement une place pour la propulsion chimique. Le CNES (Centre national d'études spatiales), se penche ainsi avec l'Office national d'études et de recherches aérospatiale (ONERA) sur le développement d'un monergol vert pour la propulsion satellitaire. La recherche sur ce nouveau composé ouvre une alternative prometteuse à l'ergol utilisé actuellement, l'hydrazine, dont la toxicité lui fait risquer d'être rapidement bannie de l'espace. Le CNRS et l'ONERA, travaillent à synthétiser cette nouvelle molécule, avec l'enjeu de choisir des matériaux qui résisteront aux hautes températures. L'objectif est de développer ensuite un moteur et de montrant que la propulsion fournit une poussée conséquente, ce qui permettra d'envisager un développement de la technologie et de proposer par la suite un démonstrateur.

L'imagerie satellitaire au service de l'environnement

En plus de l'internet satellitaire et de l'étude directe de l'atmosphère, les satellites permettent l'observation de notre planète depuis l'espace, le meilleur point de vue permettant de comprendre les changements complexes qui l'affectent. Par exemple, les satellites de la série Sentinel, du programme Copernicus, fournissent des informations sur le sol, les océans, l'atmosphère, l'environnement, la sécurité et le changement climatique. En plus d'études scientifiques sur le long terme, les satellites participant à Charte internationale « Espace et catastrophes majeures » peuvent traiter des situations d'urgence comme une éruption volcanique, un feux de forêt ou une catastrophe industrielle, en fournissant rapidement des images et des cartes.

L'imagerie hyper-spectrale peut être utilisée sur des plate-formes terrestres, spatiales ou aéroportées. Elle aide à détecter des objets dans des images grâce à leurs propriétés spectrales, ou à analyser la composition et l'état chimique de matériaux de surface, y compris l'état hydrique des végétaux. C'est le cas du démonstrateur technologique aéroporté Sysiphe de l'ONERA, qui peut acquérir des images d'une résolution de 50 centimètres dans plus de 600 bandes spectrales, allant du visible à l’infrarouge lointain. De telles technologies permettent d'étudier la biodiversité végétale, par exemple pour mettre en place à l'échelle mondiale un véritable bilan de la biodiversité, ou de caractériser les fonds marins en bord de côte.

Croiser les données permet de faire d'autres types de déductions. L'Institut de recherche technologique Saint-Exupéry présente au Salon du Bourget un « Google Earth intelligent ». Les systèmes d'observation développés combinent les bases de données et l'intelligence artificielle, en dotant les satellites d'un système d'apprentissage et d'intelligence collective qui leur permettra d'acquérir jusqu'à 30% d'images supplémentaires et d'améliorer la réactivité aux requêtes humaines, de 1 heure aujourd'hui à 5 minutes. Il s'agit d'anticiper la vague de données qui sera issue de la mise en service, dans les années à venir, de milliers de satellites formant des constellations en orbite basse.

En savoir plus

SpaceX réussit l'atterrissage de son lanceur, sur Sciences en ligne

Les satellites SPOT face aux catastrophes, sur Sciences en ligne

Ariane 6 : la riposte européenne, sur Sciences en ligne

Sentinel-2B, sur Sciences en ligne

L'évolution énergétique des aéronefs, sur Explorathèque

Féminisons les métiers de l’aéronautique, sur Explorathèque

X-CubeSat, un projet pour promouvoir le spatial, sur Explorathèque

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


Mesure participative de la qualité de l'air
Un projet vise à collecter des données sur la qualité de l'air grâce à des capteurs individuels et des smartphones.

La nécessité de mesures plus nombreuses

Face à la multiplication des pics de pollution ces derniers mois, la nécessité d'évaluer en temps réel la qualité de l'air, mesurée à partir de la concentration en différents éléments parmi les plus nocifs, s'impose toujours davantage. De plus, les informations recueillies par des organismes régionaux, comme AIRPARIF en Île-de-France, ou ATMO dans les Hauts-de-France, proviennent de sources trop éloignées, spatialement ou temporellement, les unes des autres. À cause de cela, les prévisions sur les évolutions des concentrations en polluants se révèlent généralement imprécises. Dans la région des Hauts-de-France, un consortium de laboratoires de recherche, d'associations et d'organismes régionaux a décidé de s'attaquer à ce problème. De là est né le projet OSCAR.Son principe est de faire participer la population à l'évaluation de la qualité de l'air.

Des boîtiers connectés pour l'acquisition des données

L'idée de cette initiative est d'équiper des volontaires de boîtiers d'acquisition constitués de capteurs mesurant la concentration en différents polluants de l'atmosphère environnante et de smartphones.

Les capteurs légers et peu encombrants se connectent par exemple via Bluetooth, à un smartphone ou à une tablette numérique. Cette solution économique permet de faire appel aux étudiants des lycées techniques et IUT de la région pour fabriquer les capteurs et assembler les boîtiers selon un modèle fourni par un laboratoire de la région, le LISIC.

Grâce à eux, la diffusion d'une masse critique de boîtiers fonctionnels est assurée. Les données obtenues viales équipements connectés des particuliers serviront à établir une carte extrêmement précise de la qualité de l'air. Mais, avant d'en arriver là, de nombreux obstacles doivent être surmontés.

Étalonnage et géolocalisation

Pour tracer une carte de pollution, il faut disposer simultanément de données sur la qualité de l'air suffisamment précises et d'un positionnement exact du lieu où a été prise chaque mesure. On voit là l'intérêt d'utiliser des appareils mobiles comme les smartphones : ils sont équipés de GPS, ce qui permet de transmettre en même temps les données sur la qualité de l'air et la localisation du mobile.

Mais plusieurs problèmes se posent alors. Comment garantir que les informations de géolocalisation sont suffisamment précises pour certifier l'exactitude du rendu final ? Et cette étape de positionnement des différents appareils est loin d'être la contrainte principale. Rien ne permet en effet d'affirmer a priori que deux appareils, situés au même endroit, enregistreront les mêmes valeurs. On appelle étalonnage des capteurs la phase de réglages permettant d'assurer ce dernier point. Or, il est impossible de r éaliser cette calibration au cours de la fabrication des composants, en raison du mode de fabrication retenu. On doit donc l'effectuer a posteriori, à distance et sans avoir un contrôle total sur l'environnement d'utilisation du capteur, c'est pourquoi on parle d'étalonnage aveugle.

Focus sur le problème de Netflix

La réalisation de cette étape est analogue, d'un point de vue mathématique, à ce qui est connu comme le problème de Netflix, du nom du fameux site internet répertoriant des films et des séries. L'idée est de trouver un moyen de proposer les meilleures recommandations de film à un utilisateur donné. Pour cela, Netflix disposait initialement d'évaluations de 17 770 films par 480 189 internautes, chaque évaluation correspondant à l'attribution d'un nombre de 1 à 5. Or, chaque utilisateur n'a noté qu'un tout petit nombre de films : au départ, on ne connaissait que 100 480 507 évaluations parmi plus de 8 milliards possibles. Le problème consistait donc à compléter une matrice de taille 480 189 × 17 770 dont on connaissait seulement moins de 1% des valeurs, qui correspondent aux évaluations connues. Pour en revenir à notre problème, les internautes sont les analogues des endroits précis où ont été effectuées les mesures et les évaluations correspondent aux données étalonnées. On veut donc construire une matrice C, ou plutôt une de ses approximations ?, dont chaque ligne correspond à une localisation et chaque colonne à un polluant étudié. La valeur indiquée dans une case de la matrice représentera donc la quantité exacte d'un élément toxique en un point parfaitement repéré.

Pour calculer ces dernières quantités, on a recours à une technique appelée factorisation de matrices. Le principe est de déterminer deux matrices, notées U et F respectivement. F sera la matrice d'étalonnage : chacune de ses lignes représentera le capteur, et ses colonnes correspondront aux différents polluants. La valeur dans une case sera la fonction à appliquer à la mesure inexacte, effectuée par un capteur donné sur un polluant lui aussi donné, pour obtenir la valeur exacte. Quant à U, elle donne les capteurs présents en un point donné. Grâce à la formule ? = U . F, on peut compléter en même temps les trois matrices.

Ce problème de complétion de matrices a été programmé informatiquement grâce à des algorithmes de plus en plus rapides : une implémentation de 2013 permettait de compléter en 3 secondes une matrice de taille 100 x 1000 avec une précision relative de 10-5.

Des mesures à l'exploitation

Les informations obtenues par les smartphones sont transmises à une plateforme par Internet. Les données sont d'ailleurs anonymisées grâce à la plateforme APISENSE, de l'INRIA, pour respecter la vie privée des volontaires. Les techniques de traitement mathématiques exposées précédemment permettent d'étalonner les capteurs au fur et à mesure que les données sont collectées.

Après ce traitement, la collection d'informations mobiles issues du crowd-sensing est intégrée avec les mesures réalisées par des stations atmosphériques du réseau ATMO au sein d'une base de données.

Ce nouveau traitement permet de construire des modèles, comme des cartes géographiques, où l'on peut repérer les concentrations anormales de polluants, et découvrir presque en temps réel leurs déplacements.

Cette approche ouvre de nombreuses perspectives en matière de suivi des flux de polluants et de prévision des risques environnementaux. Une initiatie qui n'aurait jamais été réalisable sans les plus récentes avancées mathématiques et informatiques...

En savoir plus

Sur les acteurs du projet

Sur la complétion de matrices (en anglais) ou avec cet article

Aurore Sallard
Twitter Facebook Google Plus Linkedin email