S'inscrire identifiants oubliés ?

50 ans de Lune

© NASA, 1968

Apollo, conquête spatiale et apports scientifiques

"Un petit pas pour l'homme, mais un grand pas pour l'humanité", les mots de Neil Armstrong sont restés dans l'Histoire, comme l’empreinte de la chaussure de Buzz Aldrin restera sur la Lune ...

CRISPR-Cas9, une révolution et des dérives

Une modification aux effets secondaires indésirés

En novembre 2018, un scientifique chinois révélait au monde entier qu'il avait réussi à créer des bébés génétiquement modifiés. Cet apprenti Frankenstein a modifié in vitro un

Sommes-nous seuls dans l'univers ?

Un peu d'histoire

A l'aube de la civilisation, la vie extraterrestre est envisagée par le prisme des dieux et divinités. Les Incas pratiquent des sacrifices, et les Aztèques tracent de grandes figures au sol destinées ...

Une demi-vie qui dépasse l'âge de l'univers

Construit 1500 m sous le sol italien, le Laboratoire National de San Grasso (LNSG) accueille le détecteur XENON1T, résultat de la collaboration internationale de plus de 160 chercheurs venus d'Europe, des États-Unis et du Moyen Orient. Le 29 avril 2019, ils annonçaient l'observation de la désintégration ...

Bio-plastique et Crustacés

@FranklinMedina

Depuis quelques années, les bioplastiques représentent un enjeu environnemental et économique majeur. Le terme bioplastique englobe les plastiques bio-sourcés, c'est-à-dire qui proviennent de matière organique, et des plastiques d'origine fossile, mais biodégradables. ...

L'homme augmenté et le transhumanisme

@Jhonny Linder

Une idéologie controversée

Le transhumanisme est un mouvement intellectuel et culturel qui prône l'usage des sciences pour l'amélioration des capacités physiques comme mentales de l'homme. Jusqu'à présent, le progrès ...

Lithium et troubles bipolaires

Une action à élucider

Les troubles bipolaires se traduisent par une vie rythmée d'épisodes de dépression entrecoupés de phases maniaques, c'est-à-dire d'états de grande excitation pathologique. Sur le long terme, on observe une perte de la matière ...

Un gel reconstructeur

© Wiki Commons

 

Un espoir pour réparer les tissus

Une équipe de chercheurs de l’Université Johns Hopkins School of Medecine à Baltimore (États-Unis) a développé un gel qui mime la micro-architecture et les propriétés mécaniques des tissus mous. Ce gel permettrait de guérir plus vite et sans déformation ni cicatrice. Testé sur des rats et des lapins, il a montré une nette amélioration de la cicatrisation. Il pourra être utilisé après des excisions de tumeur, des malformations congénitales, des brûlures, des blessures importantes ou même contre le vieillissement. Injectable par aiguille, il serait beaucoup moins traumatisant pour les patients que les transplantations de peau utilisées depuis une quinzaine d'années. Elles nécessitent en effet le prélèvement de tissus sur une autre partie du corps, laissant de nombreuses cicatrices. Dans certains cas, des implants synthétiques de peau sont utilisés mais les cellules immunitaires réagissent mal et rejettent parfois l’implant, provoquant, là aussi, des cicatrices.« Dans les greffes de peau il n’y a que l’épiderme qui est recréé ce qui ne permet pas de souplesse. Il faut un derme artificiel pour reconstruire une peau totale» explique Michael Atlan, chef de service à l'APHP au service de chirurgie plastique reconstructrice et esthétique, microchirurgie, régénération tissulaire et chercheur au laboratoire LVTS de BICHAT INSERM et membre du centre de recherche De St Antoine du Pr Bruno Feve, spécialisé dans l'étude du tissu graisseux . « On peut aussi utiliser des tissus animaux décellularisés pour construire une architecture 3D. Cette technique est souvent utilisée en reconstruction mammaire. »

Une matrice en nanofibres

Ce gel est composé de nanofibres en polymère biodégradable (nanofibres de polycaprolactone). Ce type de polymère était déjà connu et utilisé pour réaliser les points de suture. Les nanofibres sont similaires à la matrice extracellulaire. La matrice extracellulaire est une structure située à l'extérieur des cellules. Elle fournit un support structurel pour les cellules et les tissus et sert de ciment intercellulaire. « La polycaprolactone est très utile car elle se résorbe. Elle maintient l’architecture le temps que se fixent les cellules » ajoute Michael Atlan. Cependant, elles ne sont pas injectables et ne produisent pas le volume ni les propriétés mécaniques nécessaires à la reconstruction tissulaire. C’est pourquoi les nanofibres de polymères sont imbibées d’acide hyaluronique. Selon le chirurgien, « l’acide hyaluronique est un composant naturel de la matrice extracellulaire. Il facilite la reconstruction des tissus et leur hydratation ". Il était déjà utilisé par les chirurgiens pour aider la cicatrisation des petites blessures. Il se lie aux macrophages (cellules immunitaires) ce qui permet de lutter contre l’inflammation. Il induit aussi une angiogenèse (création de nouveaux vaisseaux sanguins). Après l’injection, le gel crée des liaisons entre l’acide hyaluronique et les cellules. Cela entraîne la création d’une matrice élastique, squelette permettant aux cellules du corps humain de se greffer dessus. « Le gel sera injecté en complément de cellules souches qui viendront coloniser la matrice» explique Michael Atlan. Cette structure poreuse laisse passer les cellules utiles à la cicatrisation et favorise l’angiogenèse. « L’alliance d’une matrice 3D avec des cellules souches permet de recréer un derme. Les cellules souches sont issues de la graisse, elles se différencient pour s’adapter au receveur » conclut Michael Atlan.

 

En savoir plus :

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


La nature comme exemple
Le biomimétisme, une démarche d'innovation inspirée par la nature.

Depuis quelques années, les scientifiques s'inspirent des solutions mises au point par les êtres vivants pour résoudre efficacement des problèmes très nombreux et complexes. Ce champ porte le nom de bio-mimétisme, ou d'innovation bio-inspirée. Deux exemples :

Des papillons thermorégulés

Les ailes du papillon Morpho sont extraordinaires : non seulement elles présentent une couleur inimitable, mais elles permettent également au papillon de modérer sa température interne. La couleur bleu métallique unique des ailes de ce papillon n’est pas due à la présence d'un pigment comme pour la plupart des éléments naturels colorés, mais à sa structure. L’aile de ce papillon est organisée sur cinq niveaux : l’aile, les écailles, les stries, les lamelles et enfin les molécules. C’est à ce niveau moléculaire qu’on observe une structure dite photonique de l’aile, à savoir une organisation périodique avec une période de l’ordre de grandeur de la longueur d’onde de la lumière. Cette structure extrêmement difficile à reproduire « capture » la lumière et ne laisse s’échapper que les rayons bleus. La surface de ces ailes remplit par ailleurs plusieurs fonctions, elle est auto-nettoyante et permet au papillon de réguler sa température. En effet, lorsqu’elle est chauffée, la structure de chitine de l’aile émet dans l'infra-rouge avec une intensité supérieure à une structure habituelle, ce qui permet de refroidir le papillon et de le maintenir à la température idéale de 40° C. Cette propriété pourrait fournir une piste de solution à l'un des défauts majeurs des panneaux solaires : leur performance décroît avec la température. Si la température des panneaux pouvait être maîtrisée , leur rendement serait optimisé.

Des algues chimistes

La diatomée est une algue courante dans les lacs et les rivières. Mais elle a une particularité qui fait rêver les chimistes : elle est capable de produire une carapace à partir de la silice dissoute dans l’eau, et ceci à température ambiante. Pour mémoire, le verre est produit industriellement en portant du sable (silice) à des températures d’au moins 1500°C pour le faire fondre. La diatomée a ainsi inspiré une chimie douce, se déroulant à des températures peu élevées, de 20°C à 200°C. Jacques Livage, Professeur à l'Université Pierre et Marie Curie, Membre de l'Académie des Sciences et du Collège de France, a ainsi mis au point un procédé peu énergivore, qui consiste à dissoudre de la silice dans l’eau puis à procéder à une opération de polymérisation en présence de catalyseurs et en jouant sur le pH. « Un procédé breveté en 1939 par l’entreprise Schott, mais curieusement ignoré par le monde académique jusque dans les années 1980 ! », souligne Jacques Livage. Ce procédé ne permet pas de créer des produits massifs, mais il permet de maîtriser très finement la création de la structure de silice, très utile pour réaliser des films très fins. De nombreuses applications ont déjà trouvé des débouchés économiques, par exemple pour les revêtements anti-reflet sur les vitrages des bâtiments ou les parebrises des automobiles, ou encore pour des revêtements auto-nettoyants à base de matériaux hybrides organo-minéraux en oxyde de titane (TiO2) qui décomposent les particules organiques par photocatalyse. D’autres sont encore en voie de développement comme l’emprisonnement de micro-organismes tels que des bactéries, champignons ou micro-algues dans des gels de silice tout en conservant leur activité biologique et les échanges des micro-organismes avec le milieu extérieur. Ce procédé pourrait servir pour fabriquer des capteurs antipollution ou des test immunitaires. Dans le domaine médical, des chercheurs ont également réussi à injecter chez des diabétiques des cellules de pancréas impliquées dans la production d’insuline, entourées d’une carapace en silice qui les protège contre le système immunitaire du patient.


Pour en savoir plus :

Site de l'exposition sur la bio-inspiration

Sur la photonique

Sur la chimie douce

Pauline Armary
Twitter Facebook Google Plus Linkedin email
Entrées associées