S'inscrire identifiants oubliés ?

Physique de l’espresso

Une recette ancestrale

Dans les grandes lignes, depuis son invention en 1884, la préparation d’un espresso consiste à forcer de l’eau chaude à passer assez rapidement à travers du café moulu très fin. Plus précisément, la température de l’eau ...

Des panneaux solaires bifaces

Les panneaux solaires : du silicium « dopé »

Dans un panneau solaire, l’énergie lumineuse est convertie en courant électrique, grâce à l’effet photoélectrique où un photon arrache un électron à un atome. Pour cela, il faut ...

Les électrons peuvent s’écouler comme l’eau

Lorsque l’eau s’écoule dans un tuyau, ce sont les interactions entre ses molécules qui la freinent. A l’inverse, lorsque des électrons s’écoulent dans un fil conducteur, c’est avant tout le fil lui-même qui les freine. Une équipe de chercheurs britanniques et israéliens, ...

Les cristaux temporels

Réseaux cristallins associés à l'eau. by Psi?edelisto, based on version by Dbuckingham42 - Own work, CC BY-SA 4.0,

Cristal et brisure de symétrie 

Un cristal est un état de la matière dans lequel les atomes sont ordonnés selon une périodicité spatiale ...

Du ribose dans les météorites

Le ribose, sucre vital

L’ADN - ou acide désoxyribonucléique - est formé en particulier d’un sucre, le désoxyribose, lui-même un dérivé du ribose (C5H10O5). Plus précisément, dans le désoxyribose (C5H10O4) un groupement hydroxyle (-OH) du ribose ...

Un nouveau comportement des électrons

Cooper pairs - Tem5psu CC BY-SA
Isolants, conducteurs et semi-conducteurs

Le comportement d’un solide cristallin relativement au courant électrique, peut être celui d’un isolant, d’un semi-conducteur, d’un métal ou d’un supraconducteur. Dans les isolants, ...

Interférences et biomolécules

CC BY-SA 4.0 Alexandre Gondran
Les expériences d’interférences mettant en jeu des molécules de plus en plus grosses et lourdes révèlent que les lois de la mécanique quantique sont applicables bien au-delà du monde de « l’infiniment petit » ...

Anomalie de dilatation thermique

By Simon Mer - Own work, CC BY-SA 4.0
Généralement, les matériaux se dilatent lorsqu’ils sont chauffés. La raison en est qu’une élévation de température correspond à une augmentation de l’agitation des atomes, or cette agitation n’est pas symétrique. En effet, deux atomes liés au repos sont espacés d’une distance optimale d’un point de vue énergétique, et ont beaucoup plus de mal à se rapprocher très près, que de s’éloigner l’un de l’autre. Cela résulte du fait que la force répulsive croit extrêmement vite si l’on cherche à diminuer la longueur de liaison, alors que la force attractive croit très lentement lorsqu’on tente d’augmenter cette longueur. En somme, la liaison interatomique agit comme « ressort » qui se comprime plus difficilement qu’il ne s’étire. Par conséquent l’agitation thermique a plutôt tendance à augmenter les distances interatomiques, donc le volume.

Pourtant, il existe des exceptions, comme l’eau lorsqu’elle gèle et qui est d’ailleurs l’exemple le plus courant. Plus précisément, la densité maximale de l’eau se situe vers 4°C, ce qui signifie que le liquide voit son volume diminuer lorsque la température grimpe de 0°C à 4°C. Sur cette plage de température, l’eau possède un « coefficient de dilatation négatif ». Certains éléments du tableau périodique se comportent également de cette manière, leur congélation provoquant une diminution de leur densité, le solide flottant sur le liquide. C’est le cas du silicium, du bismuth, du gallium, du germanium, du plutonium et de l’antimoine. Il s’agit là d’exemples d’anomalie de dilatation ne concernant qu’une petite plage de température ou n’ayant lieu que lors du changement de phase liquide - solide. Mettons l’eau liquide et les changements de phase de côté et intéressons-nous à des solides cristallins.

Existe-t-il de tels matériaux ayant un coefficient de dilatation négatif ? La réponse est oui et cela est bien mystérieux. Un des exemples les plus étudiés est le tungstate de zirconium (ZrW2O8) qui exhibe cette anomalie entre -273°C et 777°C. Un autre est le trifluorure de scandium (ScF3) entre -263°C et 827°C. D’autres exemples sont également connus, comme certains silicates, cyanures, les nanotubes de carbone, la glace elle-même quand elle est refroidie à – 200°C… Les études récentes du trifluorure de scandium (ScF3) commencent à lever le voile sur le mystère du coefficient négatif des solides cristallins. La distance entre des atomes liés ne diminue pas, mais c’est l’agitation de la structure cristalline qui permet une réduction de volume comme sur le schéma ci-dessous. Il est fort probable que toutes les autres anomalies puissent s’expliquer selon ce même modèle.

» lire tous les articles 1 2 3 4 5 6 7 8
sciences en ligne
exploratheque
du premier stage au premier emploi


La nature comme exemple
Le biomimétisme, une démarche d'innovation inspirée par la nature.

Depuis quelques années, les scientifiques s'inspirent des solutions mises au point par les êtres vivants pour résoudre efficacement des problèmes très nombreux et complexes. Ce champ porte le nom de bio-mimétisme, ou d'innovation bio-inspirée. Deux exemples :

Des papillons thermorégulés

Les ailes du papillon Morpho sont extraordinaires : non seulement elles présentent une couleur inimitable, mais elles permettent également au papillon de modérer sa température interne. La couleur bleu métallique unique des ailes de ce papillon n’est pas due à la présence d'un pigment comme pour la plupart des éléments naturels colorés, mais à sa structure. L’aile de ce papillon est organisée sur cinq niveaux : l’aile, les écailles, les stries, les lamelles et enfin les molécules. C’est à ce niveau moléculaire qu’on observe une structure dite photonique de l’aile, à savoir une organisation périodique avec une période de l’ordre de grandeur de la longueur d’onde de la lumière. Cette structure extrêmement difficile à reproduire « capture » la lumière et ne laisse s’échapper que les rayons bleus. La surface de ces ailes remplit par ailleurs plusieurs fonctions, elle est auto-nettoyante et permet au papillon de réguler sa température. En effet, lorsqu’elle est chauffée, la structure de chitine de l’aile émet dans l'infra-rouge avec une intensité supérieure à une structure habituelle, ce qui permet de refroidir le papillon et de le maintenir à la température idéale de 40° C. Cette propriété pourrait fournir une piste de solution à l'un des défauts majeurs des panneaux solaires : leur performance décroît avec la température. Si la température des panneaux pouvait être maîtrisée , leur rendement serait optimisé.

Des algues chimistes

La diatomée est une algue courante dans les lacs et les rivières. Mais elle a une particularité qui fait rêver les chimistes : elle est capable de produire une carapace à partir de la silice dissoute dans l’eau, et ceci à température ambiante. Pour mémoire, le verre est produit industriellement en portant du sable (silice) à des températures d’au moins 1500°C pour le faire fondre. La diatomée a ainsi inspiré une chimie douce, se déroulant à des températures peu élevées, de 20°C à 200°C. Jacques Livage, Professeur à l'Université Pierre et Marie Curie, Membre de l'Académie des Sciences et du Collège de France, a ainsi mis au point un procédé peu énergivore, qui consiste à dissoudre de la silice dans l’eau puis à procéder à une opération de polymérisation en présence de catalyseurs et en jouant sur le pH. « Un procédé breveté en 1939 par l’entreprise Schott, mais curieusement ignoré par le monde académique jusque dans les années 1980 ! », souligne Jacques Livage. Ce procédé ne permet pas de créer des produits massifs, mais il permet de maîtriser très finement la création de la structure de silice, très utile pour réaliser des films très fins. De nombreuses applications ont déjà trouvé des débouchés économiques, par exemple pour les revêtements anti-reflet sur les vitrages des bâtiments ou les parebrises des automobiles, ou encore pour des revêtements auto-nettoyants à base de matériaux hybrides organo-minéraux en oxyde de titane (TiO2) qui décomposent les particules organiques par photocatalyse. D’autres sont encore en voie de développement comme l’emprisonnement de micro-organismes tels que des bactéries, champignons ou micro-algues dans des gels de silice tout en conservant leur activité biologique et les échanges des micro-organismes avec le milieu extérieur. Ce procédé pourrait servir pour fabriquer des capteurs antipollution ou des test immunitaires. Dans le domaine médical, des chercheurs ont également réussi à injecter chez des diabétiques des cellules de pancréas impliquées dans la production d’insuline, entourées d’une carapace en silice qui les protège contre le système immunitaire du patient.


Pour en savoir plus :

Site de l'exposition sur la bio-inspiration

Sur la photonique

Sur la chimie douce

Pauline Armary
Twitter Facebook Google Plus Linkedin email
Entrées associées